山西昌源酒业有限公司改建自动化灌装 生产线与地缸大曲车间项目 环境影响报告书

(报审本)

建设单位: 山西昌源酒业有限公司

评价单位: 山西千易环保有限公司

二〇二四年三月

编制单位和编制人员情况表

项目编号		ut6z10							
建设项目名称		山西昌源酒业有限公	山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目						
建设项目类别		12025酒的制造							
环境影响评价文件	 	报告书							
一、建设单位情况	兄		良源酒						
单位名称 (盖章)		山西昌源酒业有限公	市						
统一社会信用代码	马	91140727762450294D	宗 公司	2					
法定代表人(签章	至)	段友仁	272,300,000						
主要负责人(签字	字)	王继明							
直接负责的主管人	(王继明							
二、编制单位情	况	() () () () () () () () () ()							
单位名称 (盖章)	-35	山西千易环保有限公司							
统一社会信用代码	49	91140100MA9LK2DU9R							
三、编制人员情	况	14010	8301						
1. 编制主持人									
姓名	职业资	格证书管理号	信用编号	签字					
谢慧	20150351403	52014150825000320 BH011775							
2. 主要编制人员	1								
姓名	主要	E编写内容 信用编号 签:							
谢慧	状调查与评价 环境保护措施。 影响经济损益。	项目工程分析 环境现 环境影响预测与评价 及其可行性论证 环境 分析 环境管理与监测 -划结论							

本证书由中华人民共和国人力资源和社 会保障部、环境保护部批准颁发。它表明持证 人通过国家统一组织的考试,取得环境影响评 价工程师的职业资格。

This is to certify that the bearer of the Certificate has passed national examination organized by the Chinese government departments and has obtained qualifications for Environmental Impact Assessment Engineer.

Ministry of Human Resources and Social Security
The People's Republic of China

Ministry of Environmental Protection
The People's Republic of China

端号: HP 00017878

持证人签名: Signature of the Bearer

管理号: 2015035140352014150825000320 File No. 姓名: Was

Sex

出生年月:

Date of Birth 1986. 12

专业类别:

Professional Type

批准日期:

Approval Date

2015-5-24

女

签发单位盖章

Issued by

签发日期:

2015年 12月 30日

Issued on

现有车间发酵池

现有车间发酵地缸

改建灌装车间 (己建)

改建大曲地缸车间

拟拆除改建大曲7车间

现有污水处理站

目录

1.	概述		1
	1.1	建设项目背景及特点	1
		1.1.1 建设项目的背景	1
		1.1.2 建设项目的特点	2
	1.2	环境影响评价的工作过程	3
	1.3	分析判定相关情况	4
		1.3.1 产业政策符合性分析	4
		1.3.2 用地符合性分析	5
		1.3.3 规划符合性	5
		1.3.4 昌源河湿地公园符合性分析	10
		1.3.5 与《饮料酒制造业污染防治技术政策》的符合性分析	11
		1.3.6 "三线一单"符合性分析	12
	1.4	关注的主要环境问题及环境影响	19
	1.5	环境影响评价主要结论	19
2.	总则		20
	2.1	编制依据	20
		2.1.1 任务依据	20
		2.1.2 国家相关法律、法规	20
		2.1.3 地方性法律法规	21
		2.1.4 技术依据	23
	2.2	评价目的与评价原则	23
		2.2.1 评价目的	23
		2.2.2 评价原则	24
	2.3	评价时段与评价重点	24
		2.3.1 评价时段	24
		2.3.2 评价重点	24
	2.4	评价因子与评价标准	25

		2.4.1	环境影响因素识别	. 25
		2.4.2	评价因子筛选	. 25
	2.5	环境影	影响评价等级	. 26
		2.5.1	大气环境影响评价工作等级	. 26
		2.5.2	地表水环境影响评价工作等级	. 27
		2.5.3	地下水环境影响评价工作等级	. 28
		2.5.4	声环境影响评价工作等级	. 29
		2.5.5	土壤环境影响评价工作等级	. 29
		2.5.6	环境风险评价工作等级	. 29
		2.5.7	生态环境影响评价工作等级	. 30
	2.6	环境影	影响评价范围	. 30
		2.6.1	大气环境影响评价范围	. 30
		2.6.2	地表水环境影响评价范围	. 30
		2.6.3	地下水环境影响评价范围	. 30
		2.6.4	声环境影响评价范围	. 31
		2.6.5	环境风险评价范围	. 31
	2.7	环境项	力能区划	. 31
	2.8	环境影	影响评价标准	. 31
		2.8.1	环境质量标准	. 31
		2.8.2	污染物排放标准	. 33
	2.9	环境仍	呆护目标	. 37
3.	建设	项目工	程分析	. 41
	3.1	现有二	工程	. 41
		3.1.1	基本情况	. 41
		3.1.2	工程变更情况	. 42
		3.1.3	现有工程概况	. 43
		3.1.4	工程主要工艺流程	. 47
		3.1.5	主要污染物排放情况	. 48

		3.1.6	现有工程存在的主要环境问题及整改措施	52
	3.2	工程分	· 大析	53
		3.2.1	项目概况	53
		3.2.2	工程内容	54
		3.2.3	工艺流程及产污节点	78
		3.2.4	物料平衡	87
		3.2.5	污染源分析与治理措施	88
		3.2.6	全厂主要污染源汇总	109
		3.2.7	三本账分析	112
		3.2.8	区域削减方案	112
4.	环境	现状调	查与评价	114
	4.1	地理位	立置	114
	4.2	自然玩	不境简况	114
		4.2.1	地形地貌	114
		4.2.2	气候与气象	117
		4.2.3	水文	118
		4.2.4	土壤和动植物	123
		4.2.5	地质概况	124
	4.3	环境现	见状调查与评价	124
		4.3.1	环境空气质量现状	124
		4.3.2	地表水环境质量现状	127
		4.3.3	地下水环境质量现状	129
		4.3.4	声环境质量现状	134
5.	环境	影响预	测与评价	135
	5.1	施工其	明环境影响预测与评价	135
		5.1.1	施工废气	135
		5.1.2	施工废水	136
		5 1 3	施丁噪声	136

		5.1.4	施工固体废物	. 136
	5.2	运营期	明环境影响预测与评价	136
		5.2.1	大气环境影响预测与评价	136
		5.2.2	地表水环境影响评价	147
		5.2.3	地下水环境影响预测与评价	156
		5.2.4	噪声环境影响分析	174
		5.2.5	固体废物对环境的影响分析	181
		5.2.6	生态环境影响分析	. 184
		5.2.7	环境风险分析	. 185
6.	环境	保护措	施及其可行性论证	201
	6.1	施工其	明环境保护措施及可行性分析	201
	6.2	营运期	明环境保护措施及可行性分析	202
		6.2.1	废气污染防治措施及可行性分析	202
		6.2.2	废水污染防治措施	208
		6.2.3	地下水污染防治措施及可行性分析	215
		6.2.4	噪声污染防治措施	217
		6.2.5	固体废物污染防治措施	218
		6.2.6	环境风险防范措施及应急要求	220
	6.3	环境份	呆护措施汇总及环保投资估算	224
7.	环境	影响经	济损益分析	226
	7.1	社会效	效益分析	. 226
	7.2	经济效	效益分析	. 226
	7.3	环境景	影响经济损益分析	227
		7.3.1	环保投资估算	. 227
		7.3.2	环境影响经济效益分析	227
		7.3.3	环境经济损益分析结论	229
8.	环境?	管理与	监测计划	. 230
	8.1	环境管		. 230

		8.1.1	环境管理机构	230
		8.1.2	环境管理措施	231
		8.1.3	排污口规范化	231
		8.1.4	排污许可制度	233
		8.1.5	环境保护设施验收	234
		8.1.6	企业信息公开	235
	8.2	环境』	监测计划	235
	8.3	污染物	勿排放清单	236
9.	环境	影响评	价结论	240
	9.1	评价约	吉论	240
		9.1.1	建设项目概况	240
		9.1.2	产业政策符合性	240
		9.1.3	规划及选址合理性	240
		9.1.4	环境质量现状	241
		9.1.5	施工期环境影响及防治措施	241
		9.1.6	运营期环境影响及防治措施	241
		9.1.7	总量控制	244
		9.1.8	公众意见采纳情况	244
		9.1.9	环境影响经济损益分析	245
		9.1.10	7 环境管理与监测计划	245
		9.1.1	1 综合结论	245
	9.2	建议.		246

附件

附件 1: 委托函(2021年6月16日);

附件 2: 《关于祁县良有酒业有限公司改建自动化灌装生产线与地缸大曲车间项目备案的通知》(祁工信字[2020]第 29 号);

附件 3: 企业名称准予变更登记通知书((祁)登记企变字[2020]第60号);

附件 4: 《关于"山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目"备案情况的说明》:

附件 5: 不动产权证:

附件 6: 营业执照;

附件 7: 《关于祁县良有酒业有限公司年产 6000 吨白酒改扩建工程环境影响报告书的批复》; (祁环字[2006]58 号);

附件 8:《祁县良有酒业有限公司年产 6000 吨白酒改扩建工程建设项目竣工环境保护验收组意见》(验[2011])015号);

附件 9: 排污许可证(证书编号 91140727762450294D001R);

附件 10:《晋中市生态环境局祁县分局责令改正违法行为决定书》(祁生 环改违觉字[2021]013 号):

附件 11: 天然气气质分析报告;

附件 12: 山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目监测报告:

附件 13: 山西昌源酒业有限公司环境质量现状监测;

附件 14: 酒糟处理协议:

附件 15: 城镇污水排入排水管网许可证(许可证编号: 祁审批城排字第 2023001 号);

附件 16: 山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目主要污染物总量指标置换方案。

附表

建设项目环评审批基础信息表

1. 概述

1.1 建设项目背景及特点

1.1.1 建设项目的背景

祁县良有酒业有限公司成立于 1987 年,生产能力为年产 1000 吨高粱系列白酒,拥有总资产 2000 余万元,厂址所在地位于山西省祁县贾令镇贾令村南约1.2km 处。经过多年的努力和不断地科技创新,该公司在市场开拓上取得了不俗的成绩,具有能进一步扩展的发展空间。因此祁县良有酒业有限公司于 2005年决定进行扩建,扩建完成后年产 6000 吨清香型白酒,年产值 2700 万元。2005年 4 月祁县良有酒业有限公司委托太原市环境科学研究设计院编制完成了《祁县良有酒业有限公司年产 6000 吨白酒改扩建工程环境影响报告书》,2006年12 月 15 日祁县环保局以"祁环字[2006]58号"文对该项目进行了批复(见附件);2011年 11 月 10 日祁县环保局以"验[2011]015号"文对该项目进行了验收(见附件)。

因技术更新及市场需求, 祁县良有酒业有限公司近年来对厂区设备及环保设施进行了升级改造: 2018 年拆除厂区内原有 1 台 2t/h 锅炉和 1 台 1.5t/h 燃煤锅炉,更换为 2 台 10t/h 的燃气锅炉;同时在厂区内建设了一体化筒仓用于原料的储存和粉碎,原有原料库及粉碎间用作仓库。2022 年 11 月 18 日晋中市生态环境局对山西昌源酒业有限公司续发了排污许可证书(证书编号91140727762450294D001R),有效期限自 2022 年 12 月 02 日至 2027 年 12 月 01 日(见附件);

为适应新的市场目标需求, 祁县良有酒业有限公司拟在现有厂区内进行改建, 主要建设内容为利用现有原粮库房、办公用房等改建为大曲酿造车间,改建现有的麸曲酿造二车间为地缸大曲酿造车间,新建白酒灌装车间,新增1台10t/h的燃气锅炉,同时配套建设相关辅助工程及设备等内容,建设完成后可年产白酒15000t,其中: 麸曲原酒9000t/a,大曲原酒6000t/a。2020年5月6日,祁县工业和信息化局以"祁工信字[2020]第29号"文下发了"关于祁县良有酒业有限公司改建自动化灌装生产线与地缸大曲车间项目备案的通知",同意本项目备案。

2020年7月23日祁县行政审批服务管理局以"(祁)登记企变字[2020]第60号"文准予祁县良有酒业有限公司更名为山西昌源酒业有限公司,并更换营业执照(见附件)。2022年11月18日晋中市生态环境局对山西昌源酒业有限公司排污许可证书(证书编号91140727762450294D001R)进行了延续,有效期限自2022年12月02日至2027年12月01日(见附件);

1.1.2 建设项目的特点

(1)山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目位于山西省祁县贾令镇贾令村,距离祁县县城直距约 2.6km。项目北侧为耕地,南侧为县道,紧邻县道南侧即为昌源河,西侧为空地,东侧为草地和灌木地。交通较为便利。本项目在现有厂区内进行改建,不新增占地。

本项目新增麸曲原酒 3000t/a,大曲原酒 6000t/a。建成后年产白酒 15000t,其中: 麸曲原酒 9000t/a,大曲原酒 6000t/a。本次改建内容主要包括改造现有的麸曲酿造二车间为地缸大曲酿造车间,改建厂区内现闲置库房、办公用房等为大曲酿造车间,新建白酒灌装车间,同时配套建设相关辅助工程及设备设施等内容。

(2)本项目原粮卸料及粉碎过程产生的粉尘,配套相应除尘设备后可满足《大气污染物综合排放标准》(GB16297-1996)表2中二级限值;燃气锅炉采用清洁能源天然气作燃料,并采用低氮燃烧技术后,产生的烟尘、SO₂和NOx满足《锅炉大气污染物排放标准》(DB14/1929-2019)相关要求;酿造车间产生的酒糟运至钢结构封闭酒糟库,日产日清,酒糟恶臭通过喷洒生物除臭剂除臭;酿造车间在生产过程保持车间通风,可有效稀释车间有机废气的浓度;污水处理站各池体及设施产生的恶臭经收集后进入生物滤池进行处理,NH₃和H₂S

排放的排放浓度满足《恶臭污染物排放标准》(GB14554-93)相关要求。

- (3)本项目厂区内采取雨污分流,项目生产废水和生活污水进入厂区污水处理站,处理站,处理后满足《污水排入城镇下水道水质标准》(GB/T 31962-2015)A级标准限值,废水经处理后通过污水管网进入祁县鸿宇市政污水处理有限公司处理,对周边水环境影响较小。
- (4)项目对生产过程中产生的固体废弃物均采取了有效、可靠的治理措施。 其中一体化筒仓收集的粉尘作为家畜饲料直接出售;酒糟暂存在酒糟库,外售 给养殖场作饲料,日产日清,禁止在酿造车间内堆积;污水处理站污泥干化后 清运至环卫部门指定地点倾倒,由环卫部门统一处置;废离子交换树脂和废过 滤材料由厂家定期进行回收并更换。
- (5) 厂区设备选型时采用低噪声设备,并且对所有震动设备的机组均作消声和减震处理,可满足《工业企业厂界环境噪声排放标准》(GB12348-2008) 2 类标准要求。

1.2 环境影响评价的工作过程

根据《中华人民共和国环境保护法》、《中华人民共和国环境影响评价法》和《建设项目环境保护管理条例》,本项目应进行环境影响评价。根据《建设项目环境影响评价分类管理名录》(2021年版),该项目属于该项目属于十二、酒、饮料制造业 15中的"25酒的制造 151",有发酵工艺的(年生产能力 1000千升以下的除外),应当编制环境影响报告书。为此,山西昌源酒业有限公司于2021年6月正式委托山西千易环保有限公司进行该项目的环境影响评价工作(委托书见附件)。

接受委托后,我公司成立了评价小组立即开展了现场踏勘、资料收集等工作,对拟建项目厂址周围的自然地理环境、自然生态环境作了现场踏勘、调研。评价组成员经多次现场踏勘,了解拟建项目地区环境状况,在查阅了有关产品的国家地方产业政策,按照环境影响评价技术导则要求,确定了本次项目的评价等级、评价范围和评价重点,进行了环境空气、地表水、地下水和声环境质量的现状监测。在进一步工程分析基础上,根据污染源强和环境现状监测资料进行了建设项目的环境影响预测和评价,提出污染防治和生态保护措施,从环

境保护的角度确定了项目建设的可行性,给出了评价结论,在此基础上编制完成了《山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目环境影响报告书(报审本)》,现将报告提交建设单位报审批部门组织审查。

环境影响评价工作一般分为三个阶段,即调查分析和工作方案制定阶段, 分析论证和预测评价阶段,环境影响报告书编制阶段。具体流程见下图。

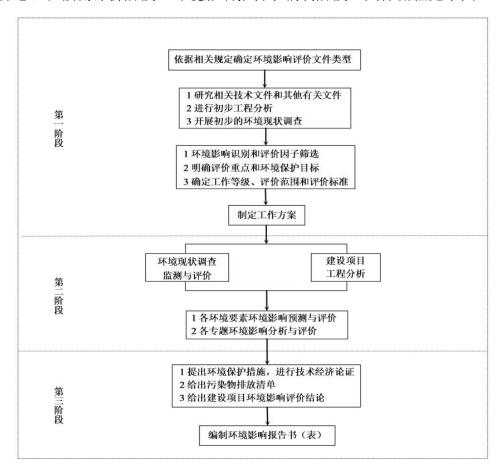


图 1.2-1 环境影响评价工作程序图

1.3 分析判定相关情况

1.3.1 产业政策符合性分析

依据《产业结构调整指导目录(2019年本)》(国家发展和改革委员会第29号令),本项目白酒生产不属于淘汰类和限制类项目,属于允许类。同时,本项目不属于《市场准入负面清单(2020年版)》禁止事项,符合相关产业政策。2020年5月6日,祁县工业和信息化局以"祁工信字[2020]第29号"文对本项目进行了备案。综上所述,本项目符合相关国家相关产业政策。

1.3.2 用地符合性分析

本项目建设地点位于祁县贾令镇贾令村南 1.2km 处,在山西昌源酒业有限公司现有厂区内建设,不新增占地,根据祁县自然资源局"晋(2020)祁县不动产权第 0001783 号"、"晋(2020)祁县不动产权第 0001784 号"、"晋(2020)祁县不动产权第 0001818 号",厂区占地面积 73961.64m²,用地性质为工业用地,符合用地规划。

1.3.3 规划符合性

(1) 祁县县城规划符合性分析

山西省人民政府于2017年10月24日以晋政函【2017】139号文下发《关于< 祁县县城总体规划(2016-2030年)>的批复》,中心城区总用地面积为176.7km²,规划范围包括主城区(昭馀区)和东观区,其中,主城区(昭馀区)规划范围包括昭馀镇和西六支乡全域及城赵镇(8个村)和古县镇(4个村)部分村庄等,城市建成区及其外围控制区总用地面积为83.4km²; 东观区规划范围包括东观镇大部分地区(29个村)、贾令镇部分村庄(长头村)和祁县玻璃器皿工业园,城市建成区及其外围控制区总用地面积为93.3km²,规划结构为"一心(东观区主中心)、两轴(原108国道主轴线和原208国道主轴线)、三片区(东观镇片区、乔家堡片区和祁县玻璃器皿工业园)"。

目前城市发展方向和建设布局情况:城市规划主要思路是东扩、南进、西连。城市整体向东扩展,适当向南推进,与城西祁临高速相连。重点为昌源新区建设,昌源新区开发成改善城市面貌、提升城市品位、完善城市功能的关键举措;完善东风路两侧用地功能;对古城四周进行规划控制,控制古城内人口,适当迁移人口并保持古城有秩序的活动,切实保护好古城。工业用地布局向城镇外围、向县城东南方向倾斜,与西六支共同开发小区,集中用地。

本项目位于祁县贾令镇贾令村南约 1.2km 处,不在祁县城市总体规划范围内,项目在祁县良有酒业有限公司现有厂区内进行改建,不新增占地,根据附件 5,企业占地性质为工业用地,因此项目建设不违背城市总体规划。

(2) 生态功能区划符合性分析

根据《祁县生态功能区划》,本项目所属区域属于IIIB-2-2-5 城赵镇、贾令镇、东观镇及峪口乡北部地区生态农业与人文景观保护生态功能小区。

主要环境问题: 该区内汾河及其主要支流流域受人为干扰相对比较强烈, 水体污染比较严重; 农业面源污染严重。

主要生态服务功能:该小区全区属生物多样性保护功能比较重要区域;该小区内大部分地区属水源涵养功能一般重要区域;该小区全区属水土保持功能一般重要区域;该小区内大部分地区属营养物质保持功能一般重要地区,该区内昌源河和乌马河流域属营养物质保持功能中等重要区域,该小区东南部属营养物质保持功能比较重要区域。

发展方向:建立果品生产基地、农副产品加工基地,发展观光休闲生态农业,形成集约、高效、景观优美的城郊生态园,与本区人文景观结合起来培育壮大旅游产业。

保护措施: 1、加强农村环境综合整治及基础设施建设,有效控制和减少各类面源污染;加强小流域治理,保护溪、河、渠等生态相对完整区域; 2、加大农业标准化生产基地建设,提高无公害、绿色、有机农产品的比重,积极开展集度假、采摘、野营于一体的现代农业田园风光生态旅游; 3、以田旺农场为龙头农业企业,大力推广生物防治、抗虫新品种等技术,化学防治使用低毒、低残留农药,提高化肥当年利用率,合理布局大中型饲养厂,创建放心畜产品生产基地; 4、以东观镇的高科技农业示范园和精品红枣开发基地为示范带动,大力发展肉牛养殖、蛋禽加工、蔬菜、优质水果等高效农业和设施农业,引导农民进行规模化养殖的适当集中,以便于污染控制;并积极推行生态养殖,将养殖与种植结合起来,既能减轻粪便污染又能减少农用化肥的使用; 5、积极推进乔家大院、延寿寺、九沟风景区等各类旅游景点水、大气、垃圾和噪声的污染防治,保护自然景观、人文景观和生态环境,建立完善的环保护管理体系,合理控制旅游规模,严格旅游设施建设项目的环境管理,促进旅游业的可持续发展。

本项目以高粱、稻壳等为原料,在陶制地缸或水泥池中发酵,蒸馏制取白酒,属于食品行业白酒制造业,符合该区"农副产品加工"的发展方向,本项目在现有厂区内进行改建,不新增占地,建设运营期采取相应环保措施后可有效减少大气污染物的排放,对周围生态环境影响较小,不违背该生态功能区规划。

祁县生态功能区划图见图 1.3-2。

(3) 生态经济区划符合性分析

根据《祁县生态经济区划》,本项目所处区域属于IVA 北部生态农牧业及农副产品加工业生态经济区。

保护要求: 1.减少区内农业生产过程中农药与化肥及塑料薄膜的使用,减少农业面源污染,全面改善农业生产环境; 2.畜禽养殖场应实现生产区、生活管理区的隔离,建设粪便污水处理设施; 3.大力发展经济林建设,提高水土保持能力。

发展方向:

禁止: 1.禁止使用高 P、高 N 化肥,尽可能少使用化学农药,减少农业发展带来的土壤板结问题; 2.严格控制养殖场随意堆积禽畜粪便和排放污水。

限制: 1.在环境承载力范围内,严格控制废水、废气和固体废物的前提下,适当发展轻工业和食品加工业,促进经济发展; 2.在建立健全环保设施的前提下,发展规模化畜禽养殖业,促进经济发展。

鼓励: 1 加强对农业投入品的监督,推广应用低残留、低毒、高效农药和生物防治技术; 2.建设农畜产品加工龙头企业和农产品加工工业集群,拓宽销售渠道,加快该区农产品集散中心建设步伐; 3 将该区的城赵、贾令建设成为肉牛、奶牛、瘦猪肉和蛋鸡为主的养殖基地; 4.合理布局规模养殖场,合理处置和综合利用畜禽养殖过程中产生的粪便和废水,通过转化为有机肥料和沼气进行资源化利用; 5.发展特色种植项目,建设蔬菜粮食加工工业园区,如以贾令为主的优质玉米、以东观为主的优质蔬菜,形成区域集中化生产,从而提高资源的利用效率。祁县生态经济区划图见图 1.3-3。

本项目以高粱、稻壳等为原料,在陶制地缸或水泥池中发酵,蒸馏制得白酒。本项目属于食品行业,对收购的农产品进行加工利用制造白酒,在现有厂区内进行改建,不新增占地,项目建设运营后在采取相应的环保措施后,在控制废水、废气和固体废物的前提下,发展和壮大了当地轻工业和食品加工业,一定程度上可促进当地经济发展,因此项目的建设运营不违背该区生态经济区规划。

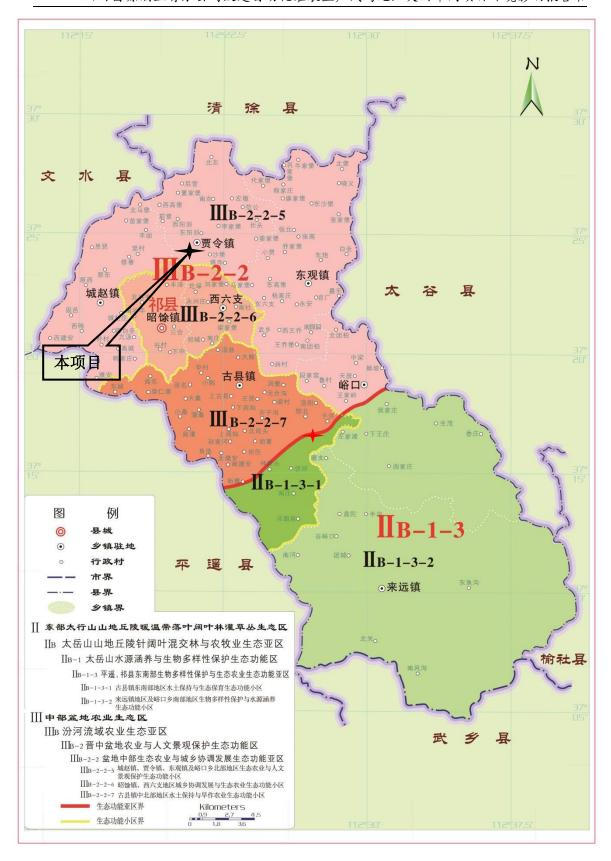


图 1.3-1 祁县生态功能区划

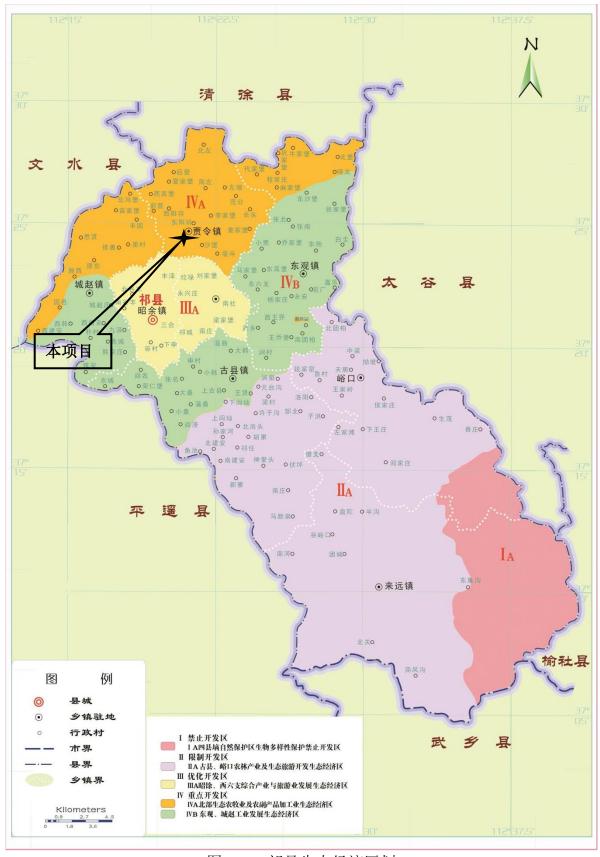


图 1.3-2 祁县生态经济区划

1.3.4 昌源河湿地公园符合性分析

山西昌源河国家湿地公园是以昌源河河流湿地为纽带,连接子洪水库、九沟等库塘、沼泽构成的复合湿地生态系统,位于国家历史文化名城山西省祁县中部,南起来远镇东鱼沟口,沿昌源河河床向北经子洪水库、九沟至刘家堡桥北100米处。其中,子洪水库范围:东到208国道以下的水库库岸、西含山体第一阶坡地。九沟范围:现九沟灌区(风景区)区域,包括祁县革命史教育馆至灌区之间的山坡与沟壑。刘家堡范围:昌源河西面刘家堡桥北扩展到祁县林场高村林地,桥南至刘家堡村庄东,昌源河东面大抵为昌源河河堤,桥北包括部分河堤外的荒滩。地理坐标为:北纬37°10′00.68″~37°23′58.25″,东经112°21′27.65″~112°31′06.30″。昌源河湿地公园区划为湿地保育区、湿地恢复区(含昌源河中段湿地恢复区、昌源河下段湿地恢复区)、宣教展示区(含刘家堡科研宣教展示区、九沟宣教展示区)、合理利用区(含九沟湿地生态景观利用区、刘家堡湿地利用区)和管理服务区。本项目不在昌源河湿地公园保护范围内,位于湿地公园下游,距离其最近的区划为管理服务区,约为2.0km。本项目与昌源河国家湿地公园位置关系见下图。

项目周边不涉及风景名胜区、天然林保护区和基本农田保护区等需要特殊保护的地区,生态环境良好,不违背相关规划,因此,本项目选址可行。

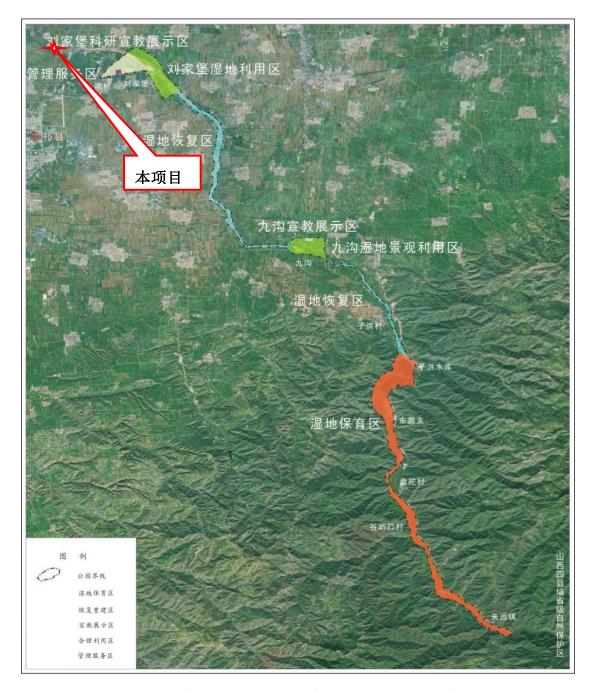


图 1.3-3 本项目与昌源河国家湿地公园位置关系图

1.3.5 与《饮料酒制造业污染防治技术政策》的符合性分析

表 1.3-2 本项目与《饮料酒制造业污染防治技术政策》的符合性分析

	饮料酒制造业污染防治技术政策	本项目	符合 性
源头及	应加强原料储存与输送过程的污染	本项目原料采用密闭斗车直接运至	
生产过	控制,原料宜采用标准化仓储、密	厂区内经计量称重后储存在一体化	符合
程污染	闭输送	筒仓,卸粮、储存、输送过程全密	

防控		闭。					
	鼓励蒸馏冷却系统以风冷代替水	本项目酿造车间蒸馏冷却系统采用	符合				
	冷,降低耗水量。	风冷。	11 口				
应	Z推进粉碎车间采用大功率、低能	本项目一体化筒仓内包含有 2 套粉					
	E的新型制粉成套设备,并安装高	碎设备,并配套有2台高效布袋除	符合				
	效的除尘设备及降噪系统	尘器和相应的降噪系统。					
		本项目一体化筒仓内原料输送过程					
月月	原料输送、粉碎工序产生的粉尘应	全密闭,粉碎工序采用密闭粉碎方					
	及用封闭粉碎、袋式除尘或喷水降	式,并设置负压管道对除杂、粉碎	符合				
	注 等方法与技术进行收集与处理。	过程产生的粉尘进行收集,采用脉	111 口				
		冲布袋除尘器进行处理,处理效率					
) -		99%。					
	国糟、滤渣堆场应采取封闭措施对 TALE 5 14 5 5 15 15 15 15 15 15 15 15 15 15 15 15	本项目建设有封闭酒糟库对产生的	++- 1.				
	生废气进行收集,采用化学吸收	酒糟进行暂存,日产日清,并喷洒	基本符合				
	法或活性炭吸附法等技术对收集废 有:#:5.4.78	生物除臭剂除臭。					
污染治 理及综	气进行处理						
	高浓度废水(锅底水、黄水、废糟	本项目广生的高浓及废水经格栅- 调节池-气浮池后进入"IC 高效厌氧					
	版	反应器",即"内循环厌氧反应器",					
	《、 发情	由 2 层 UASB 反应器串联而成,处					
	等) 宜单独收集进行预处理,再与	理后与低浓度废水进入	符合				
	中低浓度工艺废水 (冲洗水、洗涤	"AO/AO/AO+MBR 膜+混凝沉淀+					
'	水、冷却水等)混合处理	过滤+消毒"处理工艺进行混合处					
	7. () / / / / / / / / / / / / / / / / / /	理。					
涩	雪糟、麦糟宜作为优质饲料或锅炉	本项目产生的酒糟及时外售用作饲					
	然料。鼓励白酒企业废窖泥经处理	料;厂区内窖池表面采用水泥抹制,	符合				
	后作为肥料利用。	不产生废窖泥。					
		本项目废水处理过程中产生的恶臭					
	爱水处理过程中产生的恶臭气体应 ************************************	气体经收集后进入生物滤池进行处	<i>₩</i> ₩ ^				
	文集和处理,采用生物、化学或物 四符片 4 出	理,去除效率 95%;周围加强绿化,	符合				
二次污	理等技术进行处理	喷洒生物除臭剂。					
染防治		项目产生的酒糟暂存在封闭酒糟					
) (油	5輔 冰冰华操坛高院市 吃冷	库,铺设2mmHDPE膜强化防渗层,	符合				
	酒糟、滤渣等堆场应防雨、防渗 并设置渗滤液收集槽,送至污水处						
		理厂与高浓度废水共同处理。					

1.3.6 "三线一单"符合性分析

(1) 生态保护红线

根据《晋中市"三线一单"生态环境分区管控实施方案》,本项目位于晋中市的生态环境重点管控单元。重点管控单元既是产业高质量发展的承载区,也是环境污染治理和风险防范的重点区域。重点管控单元以生态修复和环境污染

治理为主,进一步优化空间布局,加强污染物排放控制和环境风险防控,不断提升资源能源利用效率,解决生态环境质量不达标、生态环境风险高等问题,实现减污降碳协同效应。

本项目属于食品生产行业的白酒制造业,不属于两高项目,运营期产生的废气采取一系列有效可行的治理净化措施后,可实现达标排放,对周边环境空气影响较小;生产废水经厂区内自建污水处理站处理,水质满足《污水排入城镇下水道水质标准》(GB/T 31962-2015)A级标准限值,废水经处理后通过污水管网进入祁县鸿宇市政污水处理有限公司处理,对周边水环境影响较小;产生的固废均具有合理的处理去向,不会对环境造成二次污染;在生产运营过程采取一系列风险防范措施进行环境风险防控。

综上,本项目的建设符合晋中市重点管控单元管控要求。

晋中市生态环境管控单元分布见图 1.3-5。

1.3.7 与《山西省人民政府关于坚决打赢汾河流域治理攻坚战的决定》、《山西省汾河保护条例》等相关文件符合性分析

根据《山西省人民政府关于坚决打赢汾河流域治理攻坚战的决定》(山西省人民政府令第262号)第十一条"在汾河干流河道水岸线以外原则上不小于一百米、支流原则上不小于五十米,划定生态功能保护线,建设缓冲隔离防护林带和水源涵养林带,改变农防段种植结构,提高汾河流域河流自净能力。"

根据《山西省汾河保护条例》第三十五条 汾河流域城镇污水集中处理设施 的运营单位应当对处理设施的出水水质负责。新建工业企业生产废水不得排入 城镇污水处理厂;已纳入城镇污水处理厂处理的工业废水应当逐步退出。向城 镇污水处理厂排放的工业废水水质需达到国家或者省规定的行业特别排放限 值。

山西昌源酒业有限公司已取得了城镇污水排入排水管网许可证(许可证编号: 祁审批城排字第 2023001号),有效期至 2028年12月25日,在现有厂区内进行改建,不违背《山西省汾河保护条例》第三十五条"新建工业企业生产废水不得排入城镇污水处理厂;已纳入城镇污水处理厂处理的工业废水应当逐步退出"的要求。

根据《山西省汾河保护条例》第四十八条"汾河流域县级以上人民政府应 当在汾河干流河道管理范围以外不小于一百米,支流不小于五十米划定生态功 能保护线,建设缓冲隔离防护林带和水源涵养林带,提高汾河流域河流自净能 力"。

山西昌源酒业有限公司拟在现有厂区内进行改建,不新增占地,主要建设内容为利用现有原粮库房、办公用房等改建为大曲酿造车间,改建现有的麸曲酿造二车间为地缸大曲酿造车间,新增灌装车间。山西昌源酒业有限公司厂界南侧距离昌源河 20m,本次改建工程内容距离昌源河最近的为大曲酿造 6 车间,距离大于 50m,原有麸曲 3 车间距离昌源河 30m,改建麸曲 3 车间使麸曲 3 车间距离昌源河大于 50m,本次评价建议建设单位在厂区与昌源河之间区域进行种植植被绿化,因此满足"在汾河干流河道水岸线以外原则上不小于一百米、支流原则上不小于五十米,汾河及入黄主要支流沿岸堤外 50 米、其支流堤外 30 米范围内实施植树种草增绿"的距离要求。

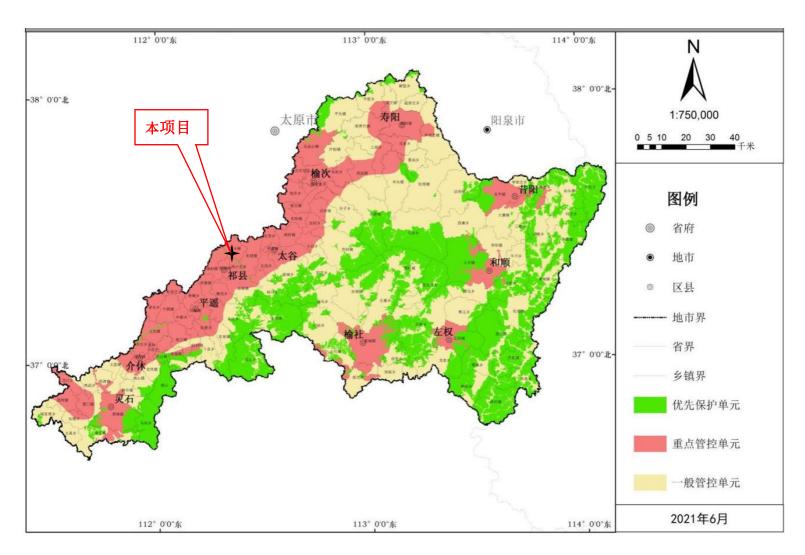


图 1.3-4 晋中市生态环境管控单元分布图

(2) 环境质量底线

本次评价引用山西省环境监测中心站祁县 2021 年环境空气质量统计数据:评价区内 PM₁₀年平均质量浓度为 111μg/Nm³,超标率 59%; PM_{2.5}年平均质量浓度为 63μg/Nm³,超标率 80%; SO₂年平均质量浓度为 37μg/Nm³,未出现超标; NO₂年平均质量浓度为 28μg/Nm₃,未出现超标; CO 第 95 百分位值为 2.5mg/m³,未出现超标; O₃ 8 小时最大第 90 百分位数为 175μg/Nm³,超标率 9%。

因此本项目所在区域环境空气质量为不达标区。

根据晋中市生态环境局公布的 2022 年 1-12 月晋中市地表水环境质量水质月报,祁县地表水共监测了昌源河入汾口 1 个省控断面,2022 年 2、4 月断面水质为劣 V 类,区域地表水水质不达标,水质状况为重度污染;2022 年 8、9 月断面水质为劣 V 类,区域地表水水质达标,水质状况为轻度污染;3、5、7、11、12 月份断面水质能够达到《地表水环境质量标准》(GB3838-2002) V 类标准,满足昌源河水质 V 类水功能区划要求,水质状况为中度污染。

本项目在采取严格的治理措施后,废气污染物的排放得到有效控制,对周围大气环境影响很小;废水经厂区内自建污水处理站处理后出水水质可满足《发酵酒精和白酒工业水污染物排放标准》(GB 27631-2011)新建企业间接排放限值,经处理后通过污水管网进入祁县鸿宇市政污水处理有限公司处理,不会恶化地表水环境;生产过程产生的固废均得到有效处置,项目投产并采取本报告规定的环保措施后,不会明显增加对区域环境的压力。

(3) 资源利用上线

本项目属于白酒酿造项目,在现有厂区内进行建设,不新增占地,占地性质为工业用地;本项目以高粱、稻壳等为原料,在陶制地缸或水泥池中发酵,而后由蒸汽锅炉蒸馏制得白酒,项目建设和营运过程中采用节能设备,工程生产用水得到最大限度回用,能源消耗较低,不违背资源利用上线要求。

(4) 环境准入负面清单

本项目与《晋中市生态环境总体准入清单》、《重点流域普适性生态环境 准入清单》中空间布局约束、污染物排放管控、环境风险防控、资源利用效率 管控要求等方面的符合性分析见下表。 表 1.3-3 晋中市生态环境总体准入清单

	· · · · · · · · · · · · · · · · · · ·	
管控类别	管控要求	本项目情况
	1.对纳入生态保护红线的,原则上按照禁止开发区进行管	
	理,严格禁止开发性、生产性建设活动,在符合现行法律	
	法规前提下,除国家重大战略项目外,仅允许对生态功能	本项目为白酒生产
	不造成破坏的有限人为活动。	项目,不涉及生态保
	2.新建、改建、扩建"两高"项目须符合生态环境保护法律	护红线划定范围;不
	法规和相关法定规划要求。	属于"两高"项目;不
空间布局	3.石化、现代煤化工项目应纳入国家产业规划。新建、扩	属于新增钢铁、焦
约束	建石化、化工、焦化、有色金属冶炼、平板玻璃项目应布	化、水泥、平板玻璃
27/K	设在依法合规设立的产业园区。	等产能范围内;项目
	4.全市严格管控新增钢铁、焦化、水泥、平板玻璃等产能;	周边无居民区和学
	严禁新增铸造产能建设项目,对确有必要新建或改造升级	校、医院、疗养院、
	的高端铸造建设项目,必须严格实施等量或减量置换。	养老院、幼儿园等单
	5.禁止在居民区和学校、医院、疗养院、养老院、幼儿园	位。
	等单位周边新建、改建、扩建可能造成土壤污染的建设项	
	目。	
	1.以"两高"行业为主导产业的园区应推动园区绿色低碳	
	发展。	
	2.新建"两高"项目应按照《关于加强重点行业建设项目区	
	域削减措施监督管理的通知》要求,依据区域环境质量改	
	善目标,制定配套区域污染物削减方案,采取有效的污染	
	物区域削减措施,腾出足够的环境容量。	
	3.新建、扩建"两高"项目应采用先进适用的工艺技术和装	
污染物	备,单位产品物耗、能耗、水耗等达到清洁生产先进水平,	本项目不属于"两
排放管控	管控要求依法制定并严格落实防治土壤与地下水污染的	高"项目;项目锅炉
	措施。	为燃气锅炉。
	4.新建、改建、扩建项目二氧化硫、氮氧化物、颗粒物和	
	挥发性有机物全面执行大气污染物特别排放限值,国家或	
	地方已出台超低排放要求的"两高"行业建设项目应满足	
	超低排放要求。	
	5.建设项目原则上不新建燃煤自备锅炉。新建耗煤项目还	
	应严格按规定采取煤炭消费减量替代措施,不得使用高污	
	染燃料作为煤炭减量替代措施。	未 項口炒四無+2+
		本项目按照要求建
双控 同心	1.建立健全突发环境事件应对工作机制,提高预防、预警、	设危废暂存间,按照 规范进行收集、贮
环境风险 防控	应对能力。	
別江	2.危险废物按规范收集、贮存、转运、利用、处置。	日本
		直, 建立健宝 天 反
	1.水资源利用上线严格落实"十四五"相关目标指标。	项目建设和营运过
気源利用 数率	1.水质源利用工线广格洛头 十四五 相关目标指标。 2.大力推进工业节水改造,鼓励支持企业开展节水技术改	型
双竿	2.八刀进处工业 1小以起, 蚁焩又付生业开展 1小仅小以	性下水川 1 肥 以 盆 ,

造和再生水回用。
3.推进水资源集约节约利用,形成水资源利用与经济社会协同发展的现代化新格局。
4.能源利用上线严格落实碳达峰、碳中和相关要求以及"十四五"相关目标指标。
5.土地资源利用上线严格落实"十四五"相关目标指标。
6.新建矿山必须达到绿色矿山建设标准,实现全市矿山地质环境根本好转。

表 1.3-4 重点流域普适性生态环境准入清单

	 	
管控类别	管控要求	本项目情况
	1.汾河流域划定河源、泉域保护区,完成保护区的生态措	
	施,完成流域生态修复的土地资源优化配置,基本建成水	
	资源合理配置和高效利用体系。	本项目为白酒生产
	2.汾河、漳河等干流及主要支流沿岸禁止新建焦化、化工、	改建项目,在现有厂
	农药、有色冶炼、造纸、电镀等高风险项目和危险化学品	区内利用闲置库房
空间布局	仓储设施。	进行改建,无新增占
工同和周 约束	3.禁止在河道内私挖滥采,确保河道防洪安全。	地,不属于炼焦、冶
约朱	4.禁止在引调水工程沿线保护范围内从事采石、采砂、取	炼、洗煤、选矿、造
	土、爆破等活动。	纸、化工、电镀等严
	5.汾河干流河岸两侧各2千米范围禁止新建炼焦、冶炼、	重污染水环境的企
	洗煤、选矿、造纸、化工、电镀等严重污染水环境的企业;	业。
	己建成的严重污染水环境的企业,应当限期改造或者搬	
	迁。	
	1.汾河流域范围内排水单位(农村生活污水排水小于 500	
	吨/日除外) 水污染物排入受纳水体的, 排放标准执行山	
	西省《污水综合排放标准》(DB14/1928-2019);处理规	
	模小于 500 吨/日的农村生活污水处理设施水污染物排放	
	执行《农村生活污水处理设施水污染排放标准》	上香口炒入床 1.77
	(DB14/726-2019) 。	本项目综合废水经
>= >+ #4.	2.禁止向汾河流域干流、支流及河滩、岸坡、坑塘、溶洞	厂区污水处理站处
污染物	倾倒垃圾、废渣等固体废物或者堆放其他污染物。	理达标后通过污水
排放管控	3.禁止将含有汞、镉、砷、铬、铅、氰化物、黄磷等的可	管网排入祁县鸿宇
	溶性剧毒废渣向水体排放、倾倒或者直接埋入地下。	市政污水处理有限
	4.在汾河流域内从事农副产品加工、规模化畜禽养殖等生	公司。
	产活动的,应当采取有效措施,防止水污染。	
	5.在汾河流域农田灌溉水体中,禁止倾倒垃圾、废渣等固	
	体废物;禁止浸泡、清洗、丢弃装贮过油类、有毒污染物	
	的车辆与器具;禁止排放油类。	
环境风险	1.在汾河流域内输送、存贮废水和污水的管道、沟渠、坑	本项目不涉及在汾
防控	塘等,应当采取防渗漏措施。	河流域内输送、存贮
		废水。

本项目属于白酒酿造改建项目,2020年5月6日祁县工业和信息化局以"祁

工信字[2020]第29号"文对本项目进行了备案。项目符合产业政策。

1.4 关注的主要环境问题及环境影响

结合本项目的工程特点和项目周边的环境特点,需关注的主要环境问题如下:

- (1)本项目施工期涉及少量土建施工及设备安装。施工期产生的污染物主要有:场地开挖、清理、进出施工现场车辆引起的道路扬尘、设备安装、物料装卸噪声,废弃包装材料和施工人员生活垃圾。
 - (2) 厂区现有工程内容存在的环境问题。
- (3)本项目运营期产生的污染物主要有:原粮卸料及粉碎过程产生的粉尘、燃气锅炉运行产生的烟尘和 SO₂、NOx,以及酒糟库产生的恶臭、酿造车间产生的有机废气、污水处理站运行过程产生的恶臭;酿酒车间蒸馏过程产生的锅底水、发酵车间产生的黄浆水、地面及设备冲洗废水、锅炉排水、洗瓶废水和纯水制备浓水等生产废水;生产设备噪声;固体废物主要包括杂质灰尘、酒糟和污水处理站产生的少量污泥、员工产生的生活垃圾、修配车间设备维护产生的废矿物油等。本次评价关注的主要环境问题及环境影响是运行期排放废气污染物对环境空气的影响;生产废水对水环境的影响;设备噪声对周围声环境的影响以及固体废物对周围环境的影响。

重点论证废水、废气处理工程设施的合理性,分析其对废水、废气的处理 效率;对固体废物的处理处置方法的合理性进行分析,保证污染物对环境影响 程度减少到最小。

1.5 环境影响评价主要结论

本项目建设符合国家相关产业政策要求,建设用地为工业用地,规划选址符合祁县县城总体规划。本项目实施后产生的废气、废水污染物经相应的环保措施治理后均可实现达标排放,厂界噪声可实现达标排放,固体废物处置去向合理,地下水防渗分区布局及污染防治措施合理可行,针对可能的环境风险采取必要的事故防范措施和应急措施,不会对环境产生明显不利影响。在落实本报告提出的各项环保措施的情况下,本项目的建设具备环境可行性。

2. 总则

2.1 编制依据

2.1.1 任务依据

- (1)《山西昌源酒业有限公司年产 6000 吨白酒改建自动化灌装生产线与 地缸大曲车间项目环境影响评价委托书》(2021 年 6 月);
- (2)《关于祁县良有酒业有限公司改建自动化灌装生产线与地缸大曲车间项目备案的通知》(祁工信字[2020]第 29 号)。

2.1.2 国家相关法律、法规

- (1) 《中华人民共和国环境保护法》(2015年1月1日);
- (2) 《中华人民共和国环境影响评价法》(2018年12月29日);
- (3) 《中华人民共和国大气污染防治法》(2018年10月26日);
- (4) 《中华人民共和国水污染防治法》(2018年1月1日);
- (5) 《中华人民共和国固体废物污染环境防治法》(2020年9月1日);
- (6) 《中华人民共和国环境噪声污染防治法》(2018年12月29日);
- (7) 《中华人民共和国土壤污染防治法》(2019年1月1日);
- (8) 《中华人民共和国土地管理法》(2020年1月1日二次修订);
- (9) 《中华人民共和国节约能源法》(2018年10月26日修订);
- (10) 《建设项目环境影响评价分类管理名录》(2021年1月1日);
- (11) 《建设项目环境保护管理条例》(国务院令第 682 号, 2017 年 10 月 1 日);
- (12) 《关于进一步加强环境影响评价管理防范环境风险的通知》(国家环保部环发[2012]77号,2012年7月3日);
- (13) 《关于切实加强风险防范严格环境影响评价管理的通知》(国家环保部环发[2012]98号,2012年8月7日);
- (14) 《关于印发<建设项目环境影响评价政府信息公开指南(试行)>的通知》(环办「2013] 103 号, 2013 年 11 月 14 日);
- (15) 《建设项目环境影响报告书(表)编制监督管理办法》(中华人民 共和国生态环境部令第9号,2019年11月1日施行);

- (16) 《关于发布<建设项目环境影响报告书(表)编制监督管理办法>配套文件的公告》(2019年10月25日印发);
- (17) 《环境影响评价公众参与办法》(生态环境部令第 4 号, 2019 年 1 月 1 日实施);
- (18) 《产业结构调整指导目录》(2019年本)(国家发展和改革委员会第 29 号令,2019年 10 月 30 日);
- (19) 《工业和信息化部关于进一步加强工业节水工作的意见》(工业和信息化部,工信部节[2010]218号);
- (20) 《国家危险废物名录(2021年版)》(生态环境部令第 15 号, 2021年 1 月 1 日);
- (21) 《饮料酒制造业污染防治技术政策》(环境保护部 2018 年第 7 号公告):
- (22) 《国务院关于印发大气污染防治行动计划的通知》(国发 [2013] 37 号, 2013 年 9 月 10 日实施);
- (23) 《国务院关于印发水污染防治行动计划的通知》(国发 [2015] 17 号, 2015 年 4 月 2 日实施);
- (24) 《国务院关于印发土壤污染防治行动计划的通知》(国发〔2016〕 31号,2016年5月28日实施);
- (25)《国务院关于印发打赢蓝天保卫战三年行动计划的通知》(国发 [2018]22号,2018年6月27日实施);
- (26) 《关于落实大气污染防治行动计划严格环境影响评价准入的通知》 (环境保护部环办[2014]30号);
- (27) 《京津冀及周边地区、汾渭平原 2020-2021 年秋冬季大气污染综合治理攻坚行动方案》(环大气[2020]61 号)。

2.1.3 地方性法律法规

- (1) 《山西省环境保护条例》(2017年3月1日实施);
- (2) 《山西省大气污染防治条例》(2018年修订)(2019年1月1日 实施);

- (3) 《山西省减少污染物排放条例》(2011年1月1日实施);
- (4) 《山西省节约用水条例》(2013年3月1日实施);
- (5) 《山西省水污染防治条例》(2019年10月1日实施);
- (6) 《山西省泉域水资源保护条例》(2022年12月1日起施行实施);
- (7) 《山西省土壤污染防治条例》(2020年1月1日实施);
- (8) 《山西省主体功能区规划》, (晋政发[2014]9号, 2014年3月17日);
- (9) 《关于印发<山西省落实大气污染防治行动计划实施方案的通知>》 (晋政发[2013]38 号, 2013 年 10 月 16 日);
- (10) 山西省生态环境厅关于印发《建设项目主要污染物排放总量指标核 定暂行办法》的通知(晋环规〔2023〕1号);
- (11) 《关于印发山西省水污染防治工作方案的通知》(晋政发[2015]59 号,2015 年 12 月 30 日);
- (12) 《山西省空气质量再提升 2022-2023 年行动计划》(晋政办发电 [2022]95 号, 2022 年 11 月 20 日);
- (13) 《山西省地下水污染防治 2022-2023 年行动计划》(晋政办发电 [2022]95 号, 2022 年 11 月 20 日);
- (14) 《山西省空气质量再提升 2022-2023 年行动计划》(晋政办发电 [2022]95 号, 2022 年 11 月 20 日);
- (15) 《黄河流域生态保护和高质量发展规划纲要》(中共中央、国务院 10月8日):
- (16) 《山西省土壤污染防治 2022-2023 年行动计划》(晋政办发电 [2022]95 号, 2022 年 11 月 20 日);
- (17) 《关于坚决打赢汾河流域治理攻坚战的决定》(山西省人民政府令第 262 号, 2019 年 4 月 12 日);
- (18) 《晋中市 2020—2021 年秋冬季大气污染综合治理攻坚行动实施方》 (市政办发[2020]47 号, 2020 年 11 月 6 日);
 - (19) 《晋中市空气质量巩固提升 2021 年行动计划》(市政办发[2021]30

号, 2021年8月23日);

(20) 《晋中市水环境质量巩固提升 2021 年工作实施方案》(市政办发 [2021]29 号, 2021 年 8 月 23 日)。

2.1.4 技术依据

- (1) 《建设项目环境影响评价技术导则 总纲》(HJ2.1—2016);
- (2) 《环境影响评价技术导则 大气环境》(HJ2.2—2018);
- (3) 《环境影响评价技术导则 地表水环境》(HJ2.3—2018);
- (4) 《环境影响评价技术导则 声环境》(HJ2.4—2021);
- (5) 《环境影响评价技术导则 地下水环境》(HJ610—2016);
- (6) 《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018);
- (7) 《建设项目环境风险评价技术导则》(HJ169—2018);
- (8) 《环境影响评价技术导则 生态影响》(HJ19—2022);
- (9) 《排污单位自行监测技术指南酒、饮料制造》(HJ 1085-2020);
- (10) 《环境空气质量评价技术规范(试行)》(HJ663-2013):
- (11) 《声环境功能区划分技术规范》(GB/T15190-2014);
- (12) 《建设项目危险废物环境影响评价指南》(2017年9月1日);
- (13) 《水污染治理工程技术导则》(HJ2015-2012);
- (14) 《大气污染治理工程技术导则》(HJ2000-2010);
- (15) 《危险化学品重大危险源辨识》(GB18218-2018);
- (16) 《地下水环境监测技术规范》(HJ/T164-2020);
- (17) 《酿造工业废水治理工程技术规范》(HJ575-2010);
- (18)《排污许可证申请与核发技术规范酒、饮料制造工业》(HJ1028-2019);
 - (19) 《排污单位自行监测技术指南 酒、饮料制造》(HJ 1085—2020);

2.2 评价目的与评价原则

2.2.1 评价目的

(1)调查了解企业所在地区及周边环境保护目标的环境质量现状,并对厂 址周围环境质量进行评价。

- (2)通过工程分析、污染源调查,掌握本项目特征污染物的排放情况,分析论证环保治理措施的经济技术可行性,并对全厂排放的污染物进行汇总,分析全厂污染物排放情况。
- (3)选择恰当的预测模式计算全厂主要污染物对周边环境、特别是对环境 保护目标的影响范围和程度,并对全厂排放主要污染物进行达标分析。
- (4)针对各类污染物产生及排放情况,根据设置污染物治理措施处理能力情况,进行可行性论证,提出控制或减轻污染的对策与建议,计算污染物排放总量控制指标。

2.2.2 评价原则

突出环境影响评价的源头作用,坚持保护和改善环境质量。

(1) 依法评价

贯彻执行我国环境保护相关法律法规、标准、政策和规划等,优化项目建设,服务环境管理。

(2) 科学评价

规范环境影响评价方法,科学分析项目建设对环境质量的影响。

(3) 突出重点

根据本项目的工程内容及特点,明确与环境要素间的作用效应关系,根据 规划环境影响评价结论和审查意见,充分利用符合时效的数据资料及成果,对 建设项目主要环境影响予以重点分析和评价。

2.3 评价时段与评价重点

2.3.1 评价时段

根据本项目的建设规模和性质,本次环境影响评价时段包括施工期和营运期两个时段。

2.3.2 评价重点

根据本项目的工程特点和项目周边的环境特点,本次评价重点如下:

- (1) 施工期产生的扬尘、噪声和固废对周围环境的影响分析:
- (2) 厂区现有项目存在的环境问题;
- (3) 本项目营运期产生的废气、废水、噪声污染防治措施可行性、达标排

放可靠性及其对周围环境的影响分析; 地下水环境防治措施可行性及其对周围环境的影响分析; 固体废物处理处置措施合理性分析; 环境风险防范措施及其对周围环境的影响分析等。

2.4 评价因子

2.4.1 环境影响因素识别

根据建设项目的工程特征和建设地区的环境特征,对本项目建设可能产生 的环境问题进行了筛选识别,结果列于下表。

					自然环境						环境	社会
序号	5号 工程行为		产业	环境	地表水	地下水	声环	固体废	土壤	生态		
			规划	空气	环境	环境	境	物处置	环境	环境	风险	经济
2	施工期	土方施工	+1LP	-1SP	-1SP	-1SP	-1SP	-1SP				
3	旭上朔	设备安装					-1SP	-1SP				
4		废气排放		-1LP								
5		废水排放			-1LP							
7		设备噪声					-1LP					
8	运营期	固体废物						-1LP				
9		环境风险事故		-1SP	-1SP	-1SP					-1SP	
11		建成投产										+1LP
12		环境管理		+1LP	+1LP	+1LP	+1LP	+1LP	+1LP		+1LP	

表 2 4-1 环境影响因子识别表

注: 影响性质: + — 有利; - —不利;

影响程度: 1 — 非显著; 2 — 可能显著; 3 — 非常显著;

影响时段: S — 短期; L —长期;

影响范围: P — 局部; W — 大范围。

本项目施工期仅涉及少量土建施工工程和厂房内部新增设备的安装与调试,对周边环境影响较小,施工结束后会很快恢复原有状态。在运营期的各种活动所产生的污染物对环境资源的影响是长期的,且影响程度大小有所不同。本项目的环境影响主要体现在对水环境、大气环境、声环境及固废方面。据此可以确定,本次评价时段主要为工程运营期。在评价时段内,对周围环境的影响因子主要为废水,其次是固体废物、废气、噪声等。

2.4.2 评价因子筛选

根据本项目的特点以及所在地区的环境特征,筛选确定本项目的评价因子, 见下表。

表 2.4-2 环境影响评价因子

	700 2:1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
环境要素	环境现状评价因子	环境影响预测因子
环境空气	基本污染物: PM ₁₀ 、PM _{2.5} 、SO ₂ 、NO ₂ 、O ₃ 、CO 其他污染物: TSP、NH ₃ 、H ₂ S、非甲烷 总烃	PM ₁₀ 、PM _{2.5} 、TSP、NH ₃ 、H ₂ S、 SO ₂ 、NOx、非甲烷总烃
地表水环境	/	对水污染控制和水环境影响减缓措施的有效性及排入祁县鸿宇市政污水处理有限公司的环境可行性进行评价
地下水环境	色度、总硬度、溶解性总固体、挥发酚、 耗氧量、亚硝酸盐氮、氨氮、氰化物、六 价铬、砷、菌落总数、总大肠菌群、汞、 铅、镉、铁、锰、氟化物、氯化物、硝酸 盐氮、硫酸盐、石油类;同步分析 K+、 Na+、Ca ²⁺ 、Mg ²⁺ 、CO ₃ ²⁻ 、HCO ³⁻ 、Cl ⁻ 、 SO ₄ ²⁻	氨氮
声环境	等效连续 A 声级	等效连续 A 声级
风险	乙醇、COD 浓度≥10000mg/l 的有机废液、甲烷、废矿物油、次氯酸钠	乙醇、COD 浓度≥10000mg/l 的有机废液、甲烷、废矿物油、次氯酸钠
固废	一般固废:生活垃圾、粉尘杂质、酒糟、 污泥、废离子交换树脂、废过滤材料 危险废物:废矿物油、废液、废包装	一般固废:生活垃圾、粉尘杂质、 酒糟、污泥、废离子交换树脂、废 过滤材料 危险废物:废矿物油、废液、废包 装

2.5 环境影响评价等级

2.5.1 大气环境影响评价工作等级

根据《环境影响评价技术导则大气环境》(HJ 2.2-2018),选择推荐模式中 AERSCREEN 估算模型,进行筛选计算和大气环境影响评价等级确定。

根据项目污染源初步调查结果,选择项目正常工况下排放主要污染物及排放参数,分别计算其最大地面空气质量浓度占标率 P_i 及第 i 个污染物的地面空气质量浓度达到标准值的 10%时所对应的最远距离 $D_{10\%}$ 。

根据本项目产生的大气污染物,选取主要污染物 TSP、 PM_{10} 、 $PM_{2.5}$ 、 NH_3 、 H_2S 、NMHC。本项目大气评价因子及 C_{0i} 取值分别见下表。

	衣 2.3-1								
评价因子	平均时段	浓度限值	标准来源						
NO ₂	1 h	200							
PM_{10}	1 h	450	《环境空气质量标准》						
PM _{2.5}	1 h	225	(GB3095-2012) 二级						
TSP	1 h	900							
NH ₃	1 h	200	《环境影响评价技术导则大气环境》(HJ						
H ₂ S	1 h	10	2.2-2018)附录 D						
NMHC	1 h	2.0	《环境空气质量 非甲烷总烃限值》						
INIVINC	' ' ' '	2.0	(DB13/1577-2012)						

表 2.5-1 评价因子和评价标准表单位: μg/m³

本项目估算统计结果见下表。

表 2.5-2 估算模型计算结果表

排放	污染源	污染物	下风向最大质量浓度	占标率	出现距	D _{10%}	推荐评
方式	行来-你	行架彻	$C_i / (mg/m^3)$	P _i /%	离/m	/km	价等级
	卸粮、清理筛	PM_{10}	1.69E-02	3.76	200	/	二级
	分粉尘	PM _{2.5}	8.45E-03	3.76	200	/	—纵
	粉碎粉尘	PM_{10}	3.58E-02	7.96	89	/	二级
	初许初主	PM _{2.5}	1.79E-02	7.96	89	/	一级
点源	工品与归品	NO_2	1.49E-02	7.47	57	/	
	天然气锅炉 废气	PM_{10}	1.52E-03	0.34	57	/	二级
		SO_2	0.87E-03	0.17	57	/	
	污水处理设	NH ₃	1.60E-03	0.8	82	/	三级
	施臭气	H ₂ S	6.41E-05	0.64	82	/	二级
	卸粮过程无 组织	TSP	2.93E-02	3.25	10	/	二级
面源	污水处理设	NH ₃	6.65E-03	3.33	16	/	二级
国 <i>训</i> 界	施无组织	H_2S	2.62E-04	2.62	16	/	—纵
	酿造车间 无组织(NMHC	1.47E-01	7.33	375	/	二级
各污	各污染源最大值		1.47E-01	7.33	375	/	二级

根据以上估算结果可知,本项目大气污染源排放的污染物占标率中最大值 Pmax=7.96%,1%<Pmax<10%,故本项目大气评价等级应为二级。

2.5.2 地表水环境影响评价工作等级

根据《环境影响评价技术导则地表水环境》(HJ 2.3-2018),地表水环境 影响评价按照影响类型、排放方式、排放量或影响情况、受纳水体环境质量现 状、水环境保护目标等综合确定。水污染影响型建设项目评价等级判定方式见 下表。

次 2.3-3 小行朱影响至是仅项目厅所等级判定					
		判定依据			
评价等级	批社士士	废水排放量 Q/(m³/d)			
	排放方式	水污染物当量数 W/(无量纲)			
一级	直接排放	Q≥20000 或 W≥600000			
二级	直接排放	其他			
三级 A	直接排放	Q<200 且 W<6000			
三级 B	间接排放	_			

表 2.5-3 水污染影响型建设项目评价等级判定

本项目产生的废水包括生产废水和生活污水,经厂区污水处理站处理达标后,通过污水管网进入祁县鸿宇市政污水处理有限公司处理。本项目为水污染型建设项目,排放方式属于间接排放,水环境影响评价等级为三级 B。

2.5.3 地下水环境影响评价工作等级

根据《环境影响评价技术导则 地下水环境》(HJ 610-2016),本项目属于"N 轻工 105、酒精饮料及酒类制造(有发酵工艺的)",地下水环境影响评价项目类别属于III类。

本项目地下水环境敏感程度分级见表见下表。

敏感程度 地下水环境敏感特征 本项目情况 集中式饮用水水源(包括已建成的在用、备 本项目距离最近的是河湾 用、应急水源,在建和规划的饮用水源)准 水源地,该水源地保护区位 保护区:除集中式饮用水水源以外的国家或 于项目东南约7km,项目选 敏感 地方政府设定的与地下水环境相关的其它 址不在该水源地范围内,不 保护区,如热水、矿泉水、温泉等特殊地下 属于准保护区以及其他保 护区 水资源保护区。 集中式饮用水水源(包括已建成的在用、备 用、应急水源,在建和规划的饮用水源)准 保护区以外的补给径流区:未划定准保护区 本项目场地周边存在分散 的集中水式饮用水水源, 其保护区以外的补 较敏感 式饮用水水源地, 无其它环 给径流区:分散式饮用水水源地:特殊地下 境敏感区 水资源(如矿泉水、温泉等)保护区以外的 分布区等其他未列入上述敏感分级的环境 敏感区。 上述地区之外的其它地区。 不敏感 / 级别敏感程 本项目地下水环境敏感程度为较敏感 度

表 2.5-4 地下水环境敏感程度分级表

本项目调查评价区周围存在分散式饮用水水源地,因此,地下水环境敏感程度等级为较敏感。

本项目地下水环境影响评价工作等级划分见下表。

农 2.3-3							
项目类别 环境敏感程度	I 类项目	II 类项目	III 类项目				
敏感	_	_	<u> </u>				
较敏感	_	<u> </u>	[1]				
不敏感		三	三				

表 2.5-5 评价工作等级分级表

根据上述项目类别及地下水环境敏感程度判定,本项目地下水环境影响评价工作等级为三级。

2.5.4 声环境影响评价工作等级

根据《环境影响评价技术导则声环境》(HJ2.4-2009)评价工作的分级依据,本项目所在地属于《声环境质量标准》(GB3096-2008)规定的 2 类功能区,项目选址周边 200m 范围内无噪声敏感目标,运营后噪声增加量在 3dB(A)以内,另外项目建成后受影响人口数量变化不大。根据《环境影响评价技术导则声环境》(HJ 2.4-2021),本项目声环境影响评价工作等级为二级。

10		
评价类别	指标	评价等级
所在区域环境功能区划	GB3096-2008 中 2 类	— <i>Σ</i> τζ
受影响人口及噪声级变化	变化不大,噪声增加<3dB(A)	二级

表 2.5-6 声环境评价等级划分表

2.5.5 土壤环境影响评价工作等级

根据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)附录 A,本项目属于其他,土壤环境评价项目类别为IV类,可不开展土壤环境影响评价工作。

2.5.6 环境风险评价工作等级

根据《建设项目环境风险评价技术导则》(HJ 169-2018),通过项目涉及的物质及工艺系统危险性和所在地的环境敏感性确定环境风险潜势及评价工作等级。

根据《建设项目环境风险评价技术导则》(HJ 169-2018)附录 B 及《危险

化学品重大危险源辨识》(GB18218-2018)表 1-危险化学品名称及其临界量, 计算本项目的危险物质数量与临界量比值(Q),计算结果见下表。

	是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是								
序	 危险物质名称	CAS 号	最大存在总量	临界量	该种危险物质	项目Q			
号	厄险物灰石物	CAS 5	q _n /t	Q _n /t	Q 值	值Σ			
1	乙醇	64-17-5	4464	500	8.928				
2	COD 浓度≥10000mg/l 的有 机废液	/	2.32	10	0.232	0.212			
3	甲烷	74-82-8	0.5	10	0.05	9.212			
4	废矿物油	/	0.7	2500	0.00028				
5	次氯酸钠	7681-52-9	0.1	5	0.002				

表 2.5-7 建设项目 O 值确定表

本项目危险物质数量与临界量比值 Q=9.212<10,则本项目环境风险潜势为 I 级。

根据《建设项目环境风险评价技术导则》(HJ169-2018),本项目环境风险潜势为 I 级,本项目环境风险主要进行简单分析。

2.5.7 生态环境影响评价工作等级

本项目为利用现有厂房进行改建的工业类项目,仅涉及少量土建施工内容 不影响土地原有功能,因此不会对区域生态环境造成明显影响,仅做生态影响 分析。

2.6 环境影响评价范围

2.6.1 大气环境影响评价范围

根据《环境影响评价技术导则大气环境》(HJ2.2-2018),本项目大气环境影响评价等级为二级,评价范围为以项目厂址为中心,边长为 5km 的矩形区域。

2.6.2 地表水环境影响评价范围

根据《环境影响评价技术导则地表水环境》(HJ 2.3-2018),本项目地表水环境影响评价等级为三级 B,项目废水经处理后通过污水管网进入祁县鸿宇市政污水处理有限公司处理,主要对水污染控制和水环境影响减缓措施的有效性及排入祁县鸿宇市政污水处理有限公司的环境可行性进行评价。

2.6.3 地下水环境影响评价范围

本项目地下水评价范围为三级,项目及周边区域为冲洪积平原,地下水整

体流向为沿昌源河自东南向西北。本次评价范围确定采用查表法,南侧以昌源河为界,东侧取厂区上游 1km,西侧取厂区下游 2km,北侧取厂区侧向 2km,划分水文地质单元,评价范围约 6km²,评价范围见图 2.9-1。

2.6.4 声环境影响评价范围

根据《环境影响评价技术导则声环境》(HJ 2.4-2009),本项目声环境影响评价工作等级为二级,评价至项目厂界外 200m 范围。

2.6.5 环境风险评价范围

根据《建设项目环境风险评价技术导则》(HJ 169-2018),本项目环境风险评价工作等级为简单分析,无需设置环境风险评价范围。

2.7 环境功能区划

(1) 环境空气质量功能区划

项目所在地为农村及工业企业混杂区,依据《环境空气质量标准》 (GB3095-2012)的规定,环境空气功能类别为二类功能区。

(2) 地表水环境功能区划

本项目所在区域地表水为昌源河,根据《山西省地表水环境功能区划》 (DB14/67-2019),该区域昌源河属子洪水库出口-入汾河,该河段功能区类型 为农业用水保护区,水质目标为V类。

(3) 地下水环境功能区划

地下水功能为生活饮用水及工、农业用水,以人体健康基准为依据,根据《地下水质量标准》(GB/T14848-2017)中地下水质量分类规定,则拟建厂址区域地下水质量类别为III类。

(4) 声环境功能区划

项目位于居住、工业混合地区,声环境功能区属《声环境质量标准》 (GB3096-2008) 2 类声环境功能区。

2.8 环境影响评价标准

2.8.1 环境质量标准

(1) 环境空气质量标准

根据《环境空气质量标准》(GB3095-2012),本项目所在区域为二类环

境空气功能区,环境空气基本污染物及 NO_X、TSP 执行《环境空气质量标准》(GB3095-2012)及 2018 年修改单中二级浓度限值。NH₃、H₂S 参照《环境影响评价技术导则大气环境》(HJ2.2-2018)附录 D 中浓度参考限值。非甲烷总烃参照河北省地方标准《环境空气质量 非甲烷总烃限值》(DB13/1577-2012)中二级标准。详见下表。

序	污染物		浓度限值		单位	标准来源
号	75条初 	年平均	日平均	小时平均	半世	
1	SO_2	60	150	500	μg/m³	
2	NO ₂	40	80	200	$\mu g/m^3$	
3	NOx	50	100	250	$\mu g/m^3$	
4	СО	_	4	10	mg/m ³	《环境空气质量标准》
5	O ₃	日最大 8h	平均 160	200	$\mu g/m^3$	(GB3095-2012) 二级
6	PM ₁₀	70	150		$\mu g/m^3$	
7	PM _{2.5}	35	75		$\mu g/m^3$	
8	TSP	200	300	_	$\mu g/m^3$	
9	NH ₃			200	$\mu g/m^3$	《环境影响评价技术导则大
10	H ₂ S			10	μg/m³	气环境》(HJ 2.2-2018)附录
10	1125			10	μg/III	D
11	 非甲烷总烃			2.0	mg/m ³	《环境空气质量 非甲烷总烃
11	- 中州	7. 水心左 — 2.0		2.0	111g/111	限值》(DB13/1577-2012)

表 2.8-1 环境空气质量标准

(2) 地表水环境质量标准

项目所在区域地表水为昌源河,根据《山西省地表水环境功能区划》 ((DB14/67-2019),该区域属子洪水库出口-入汾河段,该河段功能区类型为农业与一般景观用水保护区,水质目标为V类,执行《地表水环境质量标准》 (GB3838-2002)中V类标准,具体标准值见下表。

表 2.8-2 地表水环境质量标准单位: mg/L

污染物	рН	BOD ₅	COD	氨氮	总磷	总氮
标准值	6-9	10	40	2.0	0.4	2.0

(3) 地下水环境质量标准

本项目地下水环境现状评价因子执行《地下水质量标准》(GB/T14848-2017), III类标准, 具体标准值见下表。

表 2.8-3 地下水质量标准单位: mg/L

72.0 5 72.7 17.7 EVILLE 1 E. 11.9 2							
项目	рН	总硬度(以 CaCO₃ 计)	溶解性总固体	硫酸盐	氯化物	铁铁	锰
标准值	6.5≤pH≤8.5	≤450	≤1000	≤250	≤250	≤0.3	≤0.10
项目	挥发性酚类	阴离子表面 活性剂	耗氧量	氨氮(以N 计)	铜	锌	铝
标准值	≤0.002	≤0.3	≤3.0	≤0.50	≤1.00	≤1.00	≤0.20
项目	钠	总大肠菌群 (MPN/100 mL)	菌落总数 (CFU/mL)	亚硝酸盐 (以 N 计)	硝酸盐 (以 N 计)	氰化物	氟化物
标准值	≤200	≤3.0	≤100	≤1.00	≤20.0	≤0.05	≤1.0
项目	碘化物	汞	砷	镉	铬 (六 价)	铅	镍
标准值	≤0.08	≤0.001	≤0.01	≤0.005	≤0.05	≤0.01	≤0.02
项目	二甲苯(总量)	化学需氧量 (COD)	生化需氧量 (BOD ₅)	总氮	总磷	石油类	
标准值	≤500	≤20	≤4	≤1	≤0.2	≤0.05	

(4) 声环境质量标准

本项目所在地属于 2 类功能区, 执行《声环境质量标准》(GB3096-2008) 2 类标准。

表 2.8-4 **声环境质量标准单位: dB(A)**

吉环培内纶区米则	噪声限值		
声环境功能区类别	昼间	夜间	
2 类	60	50	

2.8.2 污染物排放标准

(1) 废气排放标准

①粉尘

本项目原粮卸料、清理除杂及粉碎工序排放的粉尘执行《大气污染物综合排放标准》(GB16297-1996)表 2 新污染源大气污染物排放限值,具体标准限值见下表。

表 2.8-5 《大气污染物综合排放标准》

	污染源 污染物	有组织排放			无组织排放	
污染源		排放浓度	排气筒高	排放速率	监控点	浓度限值
		$/(mg/m^3)$	度/m	/(kg/h)	血红点	$/(mg/m^3)$
粉碎工序	粉尘	120	1.5	3.5	周界外浓	1.0
物件工庁	材宝	120 15		3.3	度最高点	1.0

②锅炉烟气

锅炉污染物排放执行《锅炉大气污染物排放标准》(DB14/1929-2019)表 3中的燃气锅炉排放限值,具体标准限值见下表。

表 2.8-6	《锅炉大气污染物排放标准》
7C 2.0 0	

《锅炉大气污染物排		最高允许	排放浓度(mg/m³)	烟气黑度(林格曼
放标准》(DB	燃气锅炉	颗粒物	SO_2	NO_X	黑度,级)
14/1929-2019)		5	35	50	1

③恶臭污染物

污水处理站产生的恶臭(H₂S、NH₃)执行《恶臭污染物排放标准》 (GB14554-93)表 1 中新、改、扩建项目二级标准; 具体标准限值见下表。

有组织排放 无组织排放 污 污染 排放 染 排气筒 执行标准 排放量 监控 浓度限值 物 浓度 源 高度/m /(kg/h)点 $/(mg/m^3)$ $/(mg/m^3)$ 污水 H_2S 0.33 0.06 《恶臭污染物排放 处理 NH_3 / 4.9 1.5 厂界 15 标准》 各构 臭气 2000 20 (GB14554-93) / 筑物 浓度 无量纲 无量纲

表 2.8-7 《恶臭污染物排放标准》

④食堂油烟

食堂油烟排放标准执行《饮食业油烟排放标准(试行)》(GB18483-2001) 标准限值:最高允许排放浓度 2.0mg/m³。

⑤非甲烷总烃

a.企业厂区内 VOCs 无组织排放监控点执行《挥发性有机物无组织排放控 制标准》(GB 37822-2019),厂区内无组织排放浓度限值如下表。

表 2.8-8 厂区内 VOCs 无组织排放限值 (mg/m³)

	染物项目	排放限值	特别排放限值	限值含义	组织排放监控位置
	NMHC	10	6	监控点处 1h 平均浓度值	在厂房外设置监控点
		30	20	监控点处任意一次浓度值	(本) 房外以且血经总

b.企业边界 VOCs 无组织排放执行《山西省重点行业挥发性有机物 VOCs 专项 2017 治理方案》(晋气防办[2017]32 号)中企业边界排放限值(表二), 非甲烷总烃限值为 2.0 mg/m³。

(2) 水污染物排放标准

本项目废水排放执行《发酵酒精和白酒工业水污染物排放标准》(GB 27631-2011)新建企业间接排放限值,废水经处理后通过污水管网进入祁县鸿宇市政污水处理有限公司处理,同时也应满足污水处理有限公司的水质要求。祁县鸿宇市政污水处理有限公司出水水质标准为COD、氨氮、TP、全盐量达到《污水综合排放标准》(DB14/1928-2019)表 3 中二级排放标准,其余达到《城镇污水处理厂污染物排放标准》(GB18882-2002)中的一级 A 标准,具体标准值详见下表。

表 2.8-9 《发酵酒精和白酒工业水污染物排放标准》 单位: mg/L (除 pH 外)

		1 · · · · · · · · · · · · · · · · · · ·	_
序号	污染物项目	间接排放限值	污染物排放监控位置
1	рН	6~9	
2	色度 (稀释倍数)	80	
3	悬浮物	140	
4	五日生化需氧量(BOD ₅)	80	
5	化学需氧量(COD _{Cr})	400	企业废水总排放口
6	氨氮	30	
7	总氮	50	
8	总磷	3.0	
	单位产品基准排水量(m³/t)	20	

序号	污染物项目	限值	标准来源
1	$\mathrm{COD}_{\mathrm{Cr}}$	40	(1) → 1 (2), A 1
2	氨氮	2.0	《污水综合排放标准》
3	总氮	15	(DB14/1928-2019)表3中二 级排放标准,及《城镇污水处
4	总磷	0.4	以排放标准,及《城镇75小处 理厂污染物排放标准》
5	рН	6~9	(GB18882-2002)中的一级 A
6	BOD_5	10	标准
7	SS	10	h-4 - 4 prz

(3) 噪声排放标准

施工期间排放噪声执行《建筑施工场界环境噪声排放标准》 (GB12523-2011),具体限值见下表。

表 2.8-11 建筑施工场界环境噪声排放标准单位: dB(A)

昼间	夜间
70	55

运营期厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)

2类标准。具体限值见下表。

表 2.8-12 工业企业厂界环境噪声排放限值单位: dB(A)

执行标准类别	时長	没
1从1】你任矢剂	昼间	夜间
2 类	60	50

(4) 固体废物相关标准

- ①危险废物贮存执行《危险废物贮存污染控制标准》(GB 18597-2023)。
- ③危险废物收集、贮存、运输执行《危险废物收集、贮存、运输技术规范》 (HJ 2025-2012)。

2.9 环境保护目标

通过现场调查了解,本项目环境影响评价范围内无自然保护区、风景名胜区、饮用水源保护区等保护目标,周边以居民住宅为主要环境保护目标。

环境空气:本项目大气环境影响评价范围为以项目厂址为中心区域,边长为 5km 的矩形区域,保护目标为 5km 范围内的村庄居民等敏感点;

地表水:评价区内昌源河地表水质量达到《地表水环境质量标准》 (GB3838-2002) V 类水质标准;

地下水:评价区范围内村庄水井地下水质量达到《地下水质量标准》(GB/T14848-2017)III类水质标准;

环境风险: 大气环境风险评价范围为厂界外延 3km 范围,保护目标为 3km 范围内的村庄居民等敏感点:

生态环境: 防治水土流失, 保护区内植被;

声环境:周围村庄声环境质量达到2类标准。

本项目主要环境保护对象见下表,保护目标分布见下图。

表 2.9-1 本项目大气、地表水、生态、声环境保护目标

		坐林	示/ o	相对	相对厂	保护对	
类别	名称	E	N	厂界	界距离	象	控制目标
		E N		方位	/m		
	贾令镇	112°21′8″	37°24′47″	NE	2000	村庄	
	东阳羽	112°21′23″	37°25′8″	NE	2600	村庄	
	沙堡村	112°21′52″	37°24′15″	NE	1850	村庄	
	高村	112°21′54″	37°22′55″	SE	2785	村庄	《环境空气质量标准》
大气	秦村	112°21′22″	37°22′53″	SE	2120	村庄	(GB3095-2012) 二级
	圪垛村	112°21′5″	37°22′37″	SE	2210	村庄	标准
	丰泽村	112°19′36″	37°22′59″	S	1570	村庄	
	里村	112°18′5″	37°24′15″	W	2850	村庄	
	王村	112°21′8″	37°22′22″	SE	2970	村庄	
地表			/	S 20		地表水	《地表水环境质量标
水	昌源河	昌源河 /			20		准》(GB33838-2002)
///							V类标准
声环							《声环境质量标准》
境	厂界四周	无	声环境敏感目	标		声环境	(GB3096-2008) 2 类
776							声环境功能区标准
生态	<u>山</u>	西昌源国家湿地	也公园	SE	2000	生态环	 植被保护、生态恢复
土心		项目厂	区内植被			境	1月1次休17、土心恢复

表 2.9-2 本项目地下水环境保护目标

水井编号	供水 村庄	方位	距离(m)	井深(m)	水位埋深	取水类型	功能	环境功能
1#	厂区 内	/	/	190	70	倾斜平原 孔隙水	饮用	
2#	沙堡 村	NE	100	210	50	倾斜平原 孔隙水	农田灌溉	
3#	沙堡 村	NW	480	220	60	倾斜平原 孔隙水	农田 灌溉	《地下水质量标准》 (GB/T 14848-2017) III 类水质标准
4#	贾令 村	NE	2100	210	50	倾斜平原 孔隙水	饮用	III 矢水灰柳框
5#	灌溉 水井	NW	3430	200	60	倾斜平原 孔隙水	农田 灌溉	

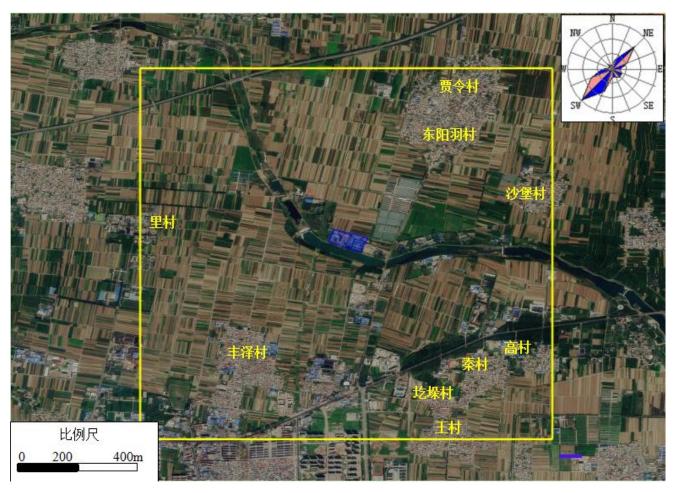


图 2.9-1 大气环境保护目标

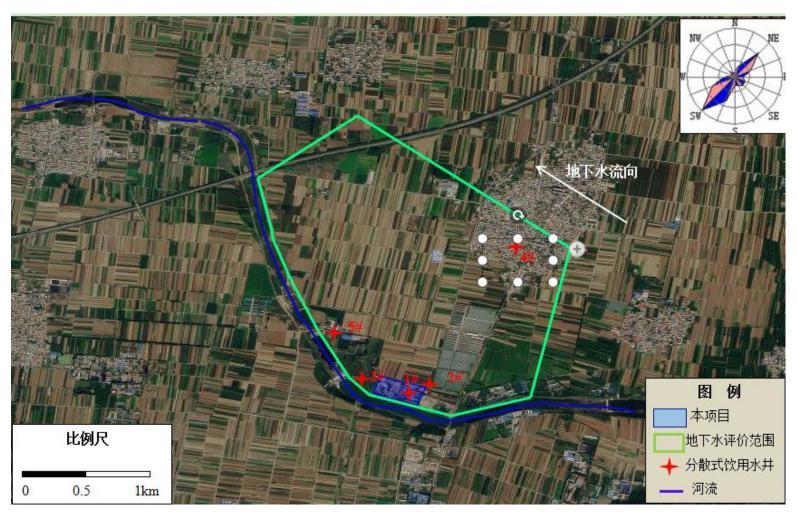


图 2.9-2 地下水环境保护目标

3. 建设项目工程分析

3.1 现有工程

3.1.1 基本情况

祁县良有酒业有限公司(现山西昌源酒业有限公司)成立于 1987 年,厂址 所在地位于山西省祁县贾令镇贾令村南约 1.2k 处。原有生产能力为年产 1000 吨高粱系列白酒,2005 年进行了扩建,扩建完成后年产 6000 吨清香型白酒生产规模。

2005年4月祁县良有酒业有限公司委托太原市环境科学研究设计院编制完成了《祁县良有酒业有限公司年产6000吨白酒改扩建工程环境影响报告书》。

2006年12月15日祁县环保局以《关于祁县良有酒业有限公司年产6000吨白酒改扩建工程环境影响报告书的批复》("祁环字[2006]58号")对该项目进行了批复。

2011年7月,祁县环境保护监测站对《祁县良有酒业有限公司年产6000吨白酒改扩建工程》进行了验收监测,同年11月10日祁县环保局以《祁县良有酒业有限公司年产6000吨白酒改扩建工程建设项目竣工环境保护验收组意见》("验[2011]015号")对该项目进行了验收。

根据《祁县良有酒业有限公司年产 6000 吨白酒改扩建工程环境影响报告 书》及《祁县良有酒业有限公司年产 6000 吨白酒改扩建工程建设项目竣工环境 保护验收组意见》内容,原有工程主要工程内容情况见下表:

项目组成		-	主要建设内容				
类别	名称						
7	产品规模	į	年生产麸曲原酒 6000t				
主体工程	酿造车间及 其配套设施 制曲基地		主要包括窖池、蒸馏间、粮库、粉碎车间、辅料仓库等。				
土作			主要包括曲房及配套粉碎车间等				
辅助 工程	锅炉房		主要包括 1 台 2t/h 锅炉和 1 台 1.5t/h 燃煤锅炉。				
公用工程		!	原料输送管线、给排水、供汽、厂内道路、绿化等公用设施。				
环保 工程	废气	锅炉烟气	配套湿式水膜除尘器+麻石水浴脱硫,烟囱高度 36m				

表 3.1-1 原有工程主要工程内容

	综合废水		污水处理站采用 UASB+三级接触氧化+气浮工艺
	噪声		车间隔声门窗,基础减震
	酒糟		外售作为饲料
		炉渣	外售作为建筑材料
		生活	业在与是不在卫勃冯北克地上
	垃圾		收集后运至环卫部门指定地点

原有工程平面布置图见下图。

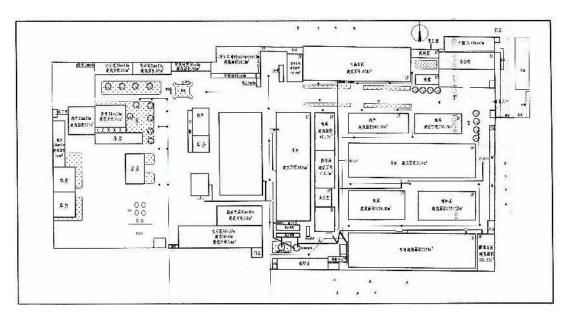


图 3.1-1 原有工程平面布置图

3.1.2 工程变更情况

2022年11月18日晋中市生态环境局对山西昌源酒业有限公司续发了排污许可证书(证书编号91140727762450294D001R),有效期限自2022年12月02日至2027年12月01日(见附件);

根据建设单位提供资料及现场勘查,现有工程主要变更内容见下表:

			2112422117	
项目组成		变更前	变更后	
主体工程	酿造车间 及其配套 设施	粮库及辅料仓库用于 原辅料存储,粉碎车间 用于物料粉碎	2018年新建一体化筒仓用于原粮存储及粉碎,包括 4 座 500T 全钢锥底仓、2 座 120T 和 1 座 60T 散料仓,清理输送系统和粉碎系统等系统设备,拆除原有粉碎车间设备,原有仓库及粉碎车间用作辅料仓储及库房	
辅助 工程	锅炉房	主要包括 1 台 2t/h 燃煤 锅炉和 1 台 1.5t/a 燃煤 锅炉。	2018 年拆除原有燃煤锅炉,更换为两台 10t/h 燃气蒸汽锅炉	
环保工程		锅炉烟气配套湿式水	2018年更换为两台 10t/h 燃气锅炉,采用低氮	

表 3.1-2 现有工程变更情况

膜除尘器+麻石水浴脱	燃烧技术,废气经 2 根 8m 高排气筒排放
硫,烟囱高度 36m	
	2021年对污水处理设施进行升级改造,新建污
	水管网约 700m,管径 110mm,污水处理规模
UASB+三级接触氧化	为 250m³/d,设计处理工艺采用"格栅间+初沉池
+气浮工艺,处理后外	+IC 厌氧反应器+AO/AO/AO+MBR 膜+混凝沉
	淀+过滤+消毒",处理后通过污水管网进入祁县
1115	鸿宇市政污水处理有限公司处理,污水处理设
	置在线监测装置

3.1.3 现有工程概况

3.1.3.1 工程内容

现有工程历经变更后,参考排污许可证副本及年度排污许可执行报告,结合现场勘查,改建后 6000 吨项目工程总占地面积 73961.64m²,现有工程内容见下表。

表 3.1-3 工程内容组成表

英別 主要建设内容 老別 包括钢板仓部分、清理输送部分、散料仓和粉碎系统;仓为 500T/仓*4 座,热镀锌板,用于高粱、玉米的储存。理输送部分包括下粮栅格、提升机、振动清理筛等设备理能力 50T/H,用于原粮的初步清理和筛分;散料仓 12仓*2 座,60T/1 座,用于散料储存,粉碎系统包括 1 套WFSS65-100 粉碎设备,粉碎能力≥15T/h,1 套 NSQ100四六瓣磨粉机,粉碎能力 8-10T/h 主体工程 包括:一车间建筑面积为 3534m²,共有 42m³ 发酵池 48 10m³ 甑锅 4 台;二车间建筑面积 3038m²,共有 15m³ 发格个,38m³ 发酵池 96 个,10m³ 甑锅 4 台;三车间建筑3534m²,共有 38m³ 发酵池 48 个,10m³ 甑锅 4 台;均为酿造工艺,包含蒸粮、窖池发酵、蒸馏酿造、丟糟工序包括制曲车间(建筑面积 1010m²),菌种车间(353.47m;应由场(200m²)和磅房(32m²)	清 , 处 0T/
包括钢板仓部分、清理输送部分、散料仓和粉碎系统;仓为 500T/仓*4 座,热镀锌板,用于高粱、玉米的储存;理输送部分包括下粮栅格、提升机、振动清理筛等设备理能力 50T/H,用于原粮的初步清理和筛分;散料仓 12仓*2 座,60T/I 座,用于散料储存,粉碎系统包括 1 套WFSS65-100 粉碎设备,粉碎能力≥15T/h,1 套 NSQ100四六瓣磨粉机,粉碎能力 8-10T/h包括:一车间建筑面积为 3534m²,共有 42m³ 发酵池 48 10m³ 甑锅 4 台;二车间建筑面积 3038m²,共有 15m³ 发格 个,38m³ 发酵池 96 个,10m³ 甑锅 4 台;三车间建筑 3534m²,共有 38m³ 发酵池 48 个,10m³ 甑锅 4 台;均为 融造工艺,包含蒸粮、窖池发酵、蒸馏酿造、丟糟工序包括制曲车间(建筑面积 1010m²),菌种车间(353.47m²	清 , 处 0T/
全为 500T/仓*4 座,热镀锌板,用于高粱、玉米的储存;理输送部分包括下粮栅格、提升机、振动清理筛等设备理能力 50T/H,用于原粮的初步清理和筛分;散料仓 12仓*2 座,60T/1 座,用于散料储存,粉碎系统包括 1 套WFSS65-100 粉碎设备,粉碎能力≥15T/h,1 套 NSQ100四六瓣磨粉机,粉碎能力 8-10T/h包括:一车间建筑面积为 3534m²,共有 42m³发酵池 48 10m³ 甑锅 4 台;二车间建筑面积 3038m²,共有 15m³发48个,38m³发酵池 96个,10m³ 甑锅 4台;三车间建筑3534m²,共有 38m³发酵池 48个,10m³ 甑锅 4台;均为酿造工艺,包含蒸粮、窖池发酵、蒸馏酿造、丢糟工序包括制曲车间(建筑面积 1010m²),菌种车间(353.47m²	清 , 处 0T/
中体化筒仓 理能力 50T/H,用于原粮的初步清理和筛分;散料仓 12仓*2座,60T/I座,用于散料储存,粉碎系统包括 1套WFSS65-100粉碎设备,粉碎能力≥15T/h,1套NSQ100四六瓣磨粉机,粉碎能力 8-10T/h 包括:一车间建筑面积为 3534m²,共有 42m³发酵池 48 10m³ 甑锅 4台;二车间建筑面积 3038m²,共有 15m³发48个,38m³发酵池 96个,10m³ 甑锅 4台;三车间建筑3534m²,共有 38m³发酵池 48个,10m³ 甑锅 4台;均为10m²,共有 38m³发酵池 48个,10m³ 甑锅 4台;均为10m²,共有 38m²发酵池 48个,10m³ 甑锅 4台;均为10m²,共有 38m²发酵池 48个,10m³ 甑锅 4台;均为10m²,共有 38m²发酵池 48个,10m³ 甑锅 4台;均为10m²,其前制条车间包括制曲车间(建筑面积 1010m²),菌种车间(353.47m²,其前制备车间	. 处 0T/
 一体化筒仓 理能力 50T/H,用于原粮的初步清理和筛分;散料仓 12仓*2座,60T/1座,用于散料储存,粉碎系统包括 1套WFSS65-100粉碎设备,粉碎能力≥15T/h,1套NSQ100四六瓣磨粉机,粉碎能力 8-10T/h 包括:一车间建筑面积为 3534m²,共有 42m³ 发酵池 48 10m³ 甑锅 4台;二车间建筑面积 3038m²,共有 15m³ 发移48个,38m³ 发酵池 96个,10m³ 甑锅 4台;三车间建筑3534m²,共有 38m³ 发酵池 48个,10m³ 甑锅 4台;均为酿造工艺,包含蒸粮、窖池发酵、蒸馏酿造、丟糟工序包括制曲车间(建筑面积 1010m²),菌种车间(353.47m²) 	0T/
主体 工程	
主体 工程 包括: 一车间建筑面积为 3534m², 共有 42m³ 发酵池 48 10m³ 甑锅 4 台; 二车间建筑面积 3038m², 共有 15m³ 发 48 个, 38m³ 发酵池 96 个, 10m³ 甑锅 4 台; 三车间建筑 3534m², 共有 38m³ 发酵池 48 个, 10m³ 甑锅 4 台; 均为 酿造工艺,包含蒸粮、窖池发酵、蒸馏酿造、丟糟工序 包括制曲车间(建筑面积 1010m²),菌种车间(353.47m	
主体 工程 包括: 一车间建筑面积为 3534m², 共有 42m³ 发酵池 48 10m³ 甑锅 4 台; 二车间建筑面积 3038m², 共有 15m³ 发 48 个, 38m³ 发酵池 96 个, 10m³ 甑锅 4 台; 三车间建筑 3534m², 共有 38m³ 发酵池 48 个, 10m³ 甑锅 4 台; 均为 酿造工艺,包含蒸粮、窖池发酵、蒸馏酿造、丟糟工序 包括制曲车间(建筑面积 1010m²),菌种车间(353.47m	*25
包括: 一车间建筑面积为 3534m², 共有 42m³ 发酵池 48 10m³ 甑锅 4 台; 二车间建筑面积 3038m², 共有 15m³ 发 48 个, 38m³ 发酵池 96 个, 10m³ 甑锅 4 台; 三车间建筑 3534m², 共有 38m³ 发酵池 48 个, 10m³ 甑锅 4 台; 均为 酿造工艺,包含蒸粮、窖池发酵、蒸馏酿造、丟糟工序包括制曲车间(建筑面积 1010m²),菌种车间(353.47m²)	
10m³ 甑锅 4 台; 二车间建筑面积 3038m², 共有 15m³ 发 48 个, 38m³ 发酵池 96 个, 10m³ 甑锅 4 台; 三车间建筑 3534m², 共有 38m³ 发酵池 48 个, 10m³ 甑锅 4 台; 均为 酿造工艺,包含蒸粮、窖池发酵、蒸馏酿造、丟糟工序 包括制曲车间(建筑面积 1010m²),菌种车间(353.47m²)	个,
3534m², 共有 38m³ 发酵池 48 个, 10m³ 甑锅 4 台; 均为酿造工艺,包含蒸粮、窖池发酵、蒸馏酿造、丢糟工序包括制曲车间(建筑面积 1010m²),菌种车间(353.47m²)	酵池
酿造工艺,包含蒸粮、窖池发酵、蒸馏酿造、丟糟工序包括制曲车间(建筑面积 1010m²),菌种车间(353.47m	面积
裁曲制备车间 包括制曲车间(建筑面积 1010m²), 菌种车间(353.47m	麸曲
	\mathbf{n}^2),
酵母车间 建筑面积 526.53m², 酵母接种制备	
2 座, 1座 3F 砖混结构, 建筑面积 2318.39m², 1座 1F	砖混
结构,建筑面积 385m², 主要功能行政办公	
辅助 生活宿舍区 1F,有2处,建筑面积分别为407.12m ² 和64m ² ,供员工	生活
工程	
全性 食堂 1F,建筑面积 186.24m ²	
化验室 建筑面积 385m²	
配电室 1F 砖混结构,建筑面积 288m²	

	ሐ	x 配 左 问	1F 砖混结构建筑面积 80.7	78m ² , 砖混彩钢瓦顶	结构 66m²,简	
	119	多配车间	单的焊接、设	设备保养,不包括喷 液	泰	
		车棚	1座, 1F, 建筑面积 560.	25m²,砖混结构,建	筑面积 152m²	
		门卫	东门和南门各 1 座, 1 F 砖混结构,建筑面积分别为 168.56 m²、 66 m²			
		水塔	2座,储水能力	150t,直径 7m,高度	38m	
	辅	浦料仓库	2 座建筑面积分别为 738n	n ² 和 900m ² 用于储存	稻壳子和麸皮	
		库房	共有3座,建筑面积分别; 要有	为 428m²、225m² 和 7 字放五金配件	75.03m ² 根据需	
储运	床	目置库房	3 座,建筑面积分别 3038 存放轴	m ² , 4246m ² ,6451 _{輔料及机械设备}	m ² ,根据需要	
工程		酒库	共 6 座酒库: 1 号酒库建筑面积 756.36m², 总容积 2400T; 2 号酒库建筑面积 982.98m², 总容积 2550T; 3 号酒库建筑面积 375m², 总容积 50T*15=750T; 4 号酒库建筑面积 560m², 总容积 50T*22=1100T; 5 号酒库建筑面积 875m², 总容积 2000T; 6 号酒库建筑面积 462m², 总容积 1120T; 均为全封闭砖混结构			
	٤	锅炉房		安装有 2 台 10t/h 燃气蒸汽锅炉,供厂区内生产用蒸汽和		
	14// //4		建筑采暖期供暖			
	供电		由市政变电站供给,1座配电室,有2台200kva变压器及配套设施,1台发电机,供厂区用电			
公用			厂区内水井, 井深 210m,			
工程		给水	动水位 47m, 出水量 30m³/h, 将井水抽出至厂区内水塔后,			
			供给厂区生产生活用水(本项目已取得取水许可证,见附件) 全厂采取雨污分流制,雨水经厂区内管道收集后排至厂区外			
	<u> </u>	非水系统				
]-1	F 小 尔 刘	昌源河;生活污水和生产废水经收集后进入厂区污水处理站, 处理后通过污水管网进入祁县鸿宇市政污水处理有限公司			
		原料卸粮	设置2个侧吸罩进行收	(中五四)中域77/7/	1年月限公司	
		粉尘	集	进入一套布袋除		
		原粮清理		尘器进行处理,处	处理后通过1	
		筛分粉尘	管道负压收集	理效率 99%	根 22m 高排	
		粉碎粉尘	1 台粉碎机和 1 台磨粉机房 进入 2 套布袋除尘器进行		气筒排放	
	废气	燃气锅炉	2 台锅炉均燃用天然气, 另	采用低氮燃烧技术,原	废气经 2 根 8m	
环保 工程		废气	高	排气筒排放		
工程		酒糟堆场 废气	全覆盖,及时	付清运外售附近养殖户	<u></u>	
		污水处理 站恶臭	喷洒生物	勿除臭剂进行除臭		
			厂区内食堂废水经隔油池		, _ , _ ,	
		废水	处理后和生产废水一起进			
			栅间+初沉池+IC 厌氧反应	器+AO/AO/AO+MB	R 膜+混凝沉淀	

			+过滤+消毒",处理后通过污水管网进入祁县鸿宇市政污水处
			理有限公司处理,污水处理设置在线监测装置
	噪声		采取消声、基础减振等措施,同时利用厂房建筑降低设备噪
			声。
		杂质粉尘	外售给祁县泓洋牧业有限公司作为养殖喂养饲料
	固体	酒糟	外售给祁县泓洋牧业有限公司作为养殖喂养饲料
	凹径 废物	污泥	由环卫部门定期清运
	及初	生活垃圾	由环卫部门统一处置
		危险废物	存放在修配车间定期交由资质单位处置

3.1.3.2 产品方案

年产清香型麸曲原酒 6000t, 散装, 存储于酒库储罐。

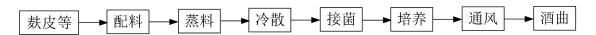
3.1.3.3 主要设备

表 3.1-4 主要设备情况表

序号	设备名称	规格型号	单位	数量	位置
1	全钢锥底仓(45°)	φ8.2×11C, 500 T/仓	座	4	一体化筒仓
2	散料仓	120T/仓*2 座,60T/1 座	座	3	一体化筒仓
3	下粮栅格	3 米×1.5 米	个	2	一体化筒仓
4	卸粮坑刮板	MS25 50T/H 8.4m	条	1	一体化筒仓
5	进筛提升机	TDTG50/28 18.3 米 50T/H	台	1	一体化筒仓
6	双筒初清筛	TCQY100/320 50T/H	台	1	一体化筒仓
7	振动筛(配循环风选 器)	TQLZ180×200 50T/H	台	2	一体化筒仓
8	永磁筒	TCXT35	套	1	一体化筒仓
9	进仓提升机	TDTG50/28 30.4 米 50T/H	台	1	一体化筒仓
10	磨粉机	/	台	1	一体化筒仓
11	粉碎机	/	台	1	一体化筒仓
12	地磅	/	套	1	一体化筒仓
13	进粉碎机提升机	TDTG30/16 20 米 15T/H	台	2	一体化筒仓
14	进Φ5.5 仓提升机	TDTG30/1620T/H	台	1	一体化筒仓
15	自动润糁机	/	套	1	一体化筒仓
16	混料装甑机	SLH300	套	6	酿造车间
17	升降机	/	台	3	酿造车间
18	风冷式冷却器	7.5kw*2	套	12	酿造车间

19	甑锅	φ3.6m, φ2.7m	台	12	酿造车间
		ψ3.0111, ψ2.7111	台		
20	搅料机	1.64		12	酿造车间
21	双梁起重机	16t 42m³,	台	8	酿造车间
22	发酵池	38m ³	个	231	酿造车间
		20m ³ ,			
23	贮料池	23.12m ³	个	12	酿造车间
24	分气缸	/	个	3	酿造车间
25	贮水池	1.5m ³	个	12	酿造车间
26	工具房	/	间	24	酿造车间
27	抓斗	/	台	12	酿造车间
28	扬渣机	/	台	10	酿造车间
29	不锈钢酒桶	/	个	192	酿造车间
30	平车	/	辆	24	酿造车间
31	喂料机	/	台	4	酿造车间
32	冷散架	13.4m	台	12	酿造车间
22	综合配电箱及配套	,	,		酿造车间
33	设施	/	/		
34	蒸汽灭菌锅	VXW	台	2	酵母车间
35	卡氏罐	/	个	200	酵母车间
36	不锈钢贮液池	/	个	1	酵母车间
37	搅拌机	XW03	台	8	酵母车间
38	天平	JYT1	台	1	酵母车间
39	蒸箱	1.7m	台	2	酵母车间
40	糊化锅	Ф1.8т	台	4	酵母车间
41	空压机	W0.36	台	1	酵母车间
42	汽水分离器	/	个	1	酵母车间
43	卡氏冷却池	/	个	1	酵母车间
44	浓浆泵	/	台	3	酵母车间
45	压滤机	M6V	个	1	酵母车间
46	高压锅	Ф1.8m	个	2	酵母车间
47	培养罐	Ф1.2m	个	8	酵母车间
		DH6000			
48	恒温培养箱	DH5000	台	4	酵母车间
		DH3600			
49	扬渣机	/	台	1	酵母车间
50	甑桶	Ф4т	个	1	制曲车间
51	水箱	1.6m	个	1	制曲车间
52	风机	/	台	16	制曲车间
53	培养池	9.2m	个	16	制曲车间

54	化验分析仪器	/	套	1	化验室
55	化验工作台	宽 1.5m/ 0.6m/1.2m	m	50.34	化验室
56	不锈钢储酒罐	50t/90t/110t/70t	个	129	酒库
57	天然气锅炉	WNS10-1.25-Q.Y	套	2	锅炉房
58	分汽缸	/	套	1	锅炉房
59	软化水装置	/	套	1	锅炉房
60	脉冲布袋除尘器	BLFF40-2200	套	3	筒仓
00		BLFF110-2200	去	3	山石
61	污水处理设施		套	1	污水处理站


3.1.3.4 主要原辅材料及动力消耗

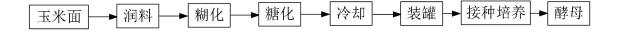

(1) 主要原辅材料

表 3.1-5 现有工程主要原辅材料一览表

		C 3.1 3	111	7 WIND 13 J. I	المحادث	
序号	原辅材料名称	包装形式	单位	年耗量	规格	暂存位置
1	高粱	散料	t/a	14500	符合《食品安全	筒仓
2	稻壳	散料	t/a	4350	国家标准粮食》	库房
3	玉米	散料	t/a	520	GB2715-2016,高	筒仓
4	麸皮	袋装	t/a	1240	粱符合国家标准	库房
4		衣衣	v a	1240	GBT8231-2007	1年1万
5	水	/	m ³ /a	5.05 万	/	水塔
6	天然气	管道运输	万 m³	228	/	/

3.1.4 工程主要工艺流程

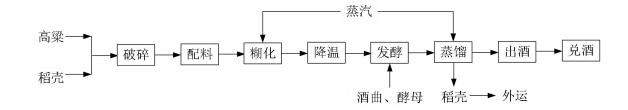


图 3.1-2 现有工程主要工艺流程

工艺流程简述:

- (1)制曲生产工艺流程简述:本厂采用麸皮、稻壳为原料经配料、蒸料、冷散、接菌、培养、间敞和连续通风,制得酒曲;采用玉米作为原料经润料、糊化、糖化、冷却、装罐、接菌培养制得酵母。
- (2)酿酒生产工艺流程简述:首先原材料高梁与稻壳粉磨成一定粒度,然后加水得到的配料,而后通入蒸汽进行糊化,蒸煮后降至一定温度加酒曲、酵母入池发酵,发酵后的配料上甑再通入蒸汽进行蒸馏,过滤液即为原酒,打开甑盖,将甑内熟料人工铲出,这部分熟料也称糟,其部分酒糟配以酒酪再进入蒸煮糊化阶段作为制酒原料使用,剩余的部分外运。

3.1.5 现有工程排污口规范化设置情况

现有工程简仓卸料粉尘、清理筛分粉尘、粉碎粉尘排气筒具有编号铭牌, 并注明排放的污染物,2个燃气锅炉废气排气筒具有编号铭牌,并注明排放的 污染物。现有工程废气排污口、噪声排放点均未在排放口附近醒目处设置环境 保护图形标志牌。

3.1.6 主要污染物排放情况

3.1.6.1 废气

根据《山西昌源酒业有限公司自行监测(2023 年十月份)》(2023 年 11 月 10 日,山西蓝源成环境监测有限公司),现有工程废气污染物排放量及防治措施情况见下表。

表 3.1-6 现有工程废气排放情况及环保治理措施一览表

	秋 5.1-0							
序号	废气污染源	污染物	排放\ 排放浓度 (mg/m³)	青况 排放量 (t/a)	 	执行标准 (mg/m³)	排放方式	达标情况
1	筒仓卸料粉尘、 清理筛分粉尘、 粉碎粉尘	颗粒物	8.1	0.24	卸料粉尘经侧吸罩收集后,清理筛分粉尘经管道负压 收集后,共同引至一套布袋除尘器进行处理,两台粉 碎机粉碎粉尘经管道负压收集后分别引入一套布袋 除尘器进行处理(共两套布袋除尘器),处理效率 99%	120	经一根 22m 排气筒 P1 排放	达标
2	卸料过程无组 织粉尘	颗粒物	0.591	0.036		1.0	无组织排放	达标
		NOx	18	0.774		50		达标,
3	1#燃气锅炉废	锅炉废 SO ₂ / 0.095] - 燃用清洁能源天然气,低氮燃烧技术	35	经 8m 排气	NOx 排放		
3	气	颗粒物	4.1	0.1568	, 然用有有能像人然 (,	5	筒 P2 排放	量满足许 可排放量
		NOx	18	0.774		50		达标,
1	2#燃气锅炉废	SO_2	/	0.095	, 	35	经 8m 排气	NOx 排放
4	气	颗粒物	3.7	0.158	· 燃用清洁能源天然气,低氮燃烧技术	5	筒 P3 排放	量满足许 可排放量
5	酒糟堆场废气	恶臭	/	/	通过喷洒生物除臭剂除臭,及时清运	20(无量纲)	无组织排放	/
6	食堂	油烟	1.875	0.011	安装油烟净化装置,油烟净化效率≥75%	/	无组织排放	/
		NH ₃	0.013	/		1.5	无组织排放	达标
7	污水处理站	H_2S	0.026	/	─ ───────────────────────────────────	0.06	无组织排放	达标
7 污水处理	1.7小处址如	污水处理站 臭气浓 度	/	/	· 现值工物体类用处行体类	20(无量纲)	无组织排放	/

根据上表分析可知,排气筒 P3、P4 燃气锅炉排放 NOx、SO₂、颗粒物的排放浓度及排放速率均满足《锅炉大气污染物排放标准》(DB14/1929-2019)中相关限值要求,排气筒 P2 颗粒物排放满足《大气污染物综合排放标准》(GB16297-1996)中相关限值要求。

3.1.6.2 废水

1、 废水污染治理措施

根据建设单位实际运行情况及提供资料,现有工程废水产生情况如下:

(1) 生产废水

本项目生产过程产生的废水主要包括高浓度有机废水和低浓度有机废水,高浓度废水为酿酒车间的锅底水、发酵过程产生的窖底水,低浓度有机废水为车间地面冲洗废水、设备清洗废水和循环冷却水排水以及锅炉排水,根据建设单位实际运行情况,采暖期产生量为70.78m³/d,非采暖期产生量为65.0m³/d,经厂区污水管道收集后送至厂区污水处理站进行处理。

(2) 生活污水

生活污水产生量为 8m3/d, 进入厂区污水处理站进行处理。

项目生活污水和生产废水采暖期产生量为 78.78m³/d, 非采暖期产生量为 73.0m³/d, 一同进入厂区污水处理站进行处理, 污水处理站处理规模为 250 m³/d, 设计处理工艺采用"格栅间+调节池+气浮池+IC 厌氧反应器+AO/AO/AO+MBR 膜+混凝沉淀+过滤+消毒", 经处理后废水经污水管网排入祁县鸿宇市政污水处理有限公司。

(3) 达标排放情况

根据《山西昌源酒业有限公司自行监测(2023年十二月份)》监测数据,各污染物排放浓度满足《发酵酒精和白酒工业水污染物排放标准》(GB 27631-2011)新建企业间接排放限值,同时也满足污水处理有限公司的进水水质要求。污水处理厂出水水质见下表,满足排放标准要求。

表 3.1-7 项目废水总排放口出水水质 单位: mg/L(pH 无量纲)

项目	$\mathrm{COD}_{\mathrm{Cr}}$	氨氮	BOD ₅	SS	总磷	总氮
出水水质	242	13.5	29.2	86	13.9	190

标准限值 400 30	80 140	3	50
-------------	--------	---	----

3.1.6.3 噪声

现有工程噪声源主要为粉碎、酿酒、蒸汽生产和污水处理等工序的生产设备、各类风机、水泵等设备,对各种风机、水泵等噪声源采取消声、基础减振等措施,同时利用厂房建筑降低设备噪声。

根据《山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目监测》(2021年7月29日,山西蓝源成环境监测有限公司),监测期间现有工程正常运行,厂界昼间噪声值在50.2~53.4dB(A)之间,夜间噪声值在39.2~43.5dB(A),满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2类限值要求。

3.1.6.4 固体废物

根据建设单位实际运行情况提供资料,本项目现有工程产生的固废包括一般工业固体废物、生活垃圾及危险废物,其产生及处置情况见下表。

固体废物名 现状产生 序号 产生工序 固体废物类别 现状处置措施 量/(t/a) 称 卸粮、除杂、 作为家畜饲料直接出 粉尘杂质 1 14.5 一般固废 粉碎 2 酒糟 酿酒 16200 一般固废 外售给养殖场作饲料 3 污泥 污水处理站 1.5 一般固废 由环卫部门定期清运 4 生活垃圾 生活办公 生活垃圾 由环卫部门统一处置 30 交由厂家进行定期更 废离子交换 5 锅炉软水制备 0.2 一般固废 树脂 换 修配车间设备 6 废矿物油 0.2 危险废物 交由有资质单位处置 维护过程 化验室废液、 7 化验室 0.02 危险废物 交由有资质单位处置 废包装

表 3.1-8 现有工程固体废物处置情况

现有工程污染物年度排放情况如下表所示。

表 3.1-9	现有工程	足污染物排放	仗情况一览 。	表 单位: t/a

项目	污染因子	实际排放量
	NO_X	1.548
废气	SO_2	0.19
	颗粒物	0.714
废水	$\mathrm{COD}_{\mathrm{Cr}}$	0.997

项目	污染因子	实际排放量
	氨氮	0.049

3.1.7 现有工程存在的主要环境问题及整改措施

3.1.7.1 主要环境问题

- 1、厂区化验室废液、废包装及修配车间的废矿物油采用简易桶装进行简单 收集处理,危废暂存间设置不规范,本次要求厂区新建危废暂存间,按照规范 进行收集、贮存、转运、利用、处置。
- 2、酒糟库为临时库房,设计不够规范,厂区须建设封闭酒糟库,铺设防渗层,喷洒生物除臭剂除臭,酒糟外售给附近养殖场作饲料,做到日产日清,禁止在酿造车间内堆积。
- 3、污水处理站恶臭未进行收集处理,仅喷洒生物除臭剂进行除臭,厂区须将处理设施全封闭并安装集气管,收集后进入生物滤池除臭系统处理后排放。
- 4、厂区未建设应急事故水池和初期雨水收集池,发生事故时不能有效接纳 装置排水、消防水等污染水,新建应急事故池,以免事故污水进入外环境造成 污染。
- 5、厂区排污口设置不规范,应根据《环境保护图形标志排放口(源)》 (GB15562.1—1995)等相关规定在厂区"三废"及噪声排放点设置标志牌

3.1.7.2 整改措施一览表

表 3.1-10 项目整改措施一览表

We are to the model of the mode					
种类	污染源	存在问题	整改措施		
废气	酒糟恶 臭	未采取封闭措施并进行处理,不 符合《饮料酒制造业污染防治技 术政策》要求	建设钢结构封闭酒糟库,日产日清,喷洒生物除臭剂除臭		
<i>)</i> 及飞	污水处 理站恶 臭	未设置臭气收集装置并进行除 臭处理	处理设施全封闭并设置废气收集装 置,收集废气进入生物滤池除臭系统 进行处理		
固废	废矿物 油 化验室 废液、 废包装	进行简单收集处置,不符合《危险废物贮存污染控制标准》 (GB18597-2001)	建设 10m ² 危废暂存间,不同危废分类 存放,定期交由有资质单位进行处置		
	酒糟	堆放及暂存场所不规范	建设封闭钢结构酒糟库, 丟糟暂存于 厂区酒糟库内, 日产日清		
地下水	酒糟库	酒糟库为临时库房,设计不够规	采用黏土基础防渗+混凝土路面,渗透		

		范	系数≤1.0×10 ⁻⁷ cm/s,渗滤液通过收集
			槽收集后送至厂区污水处理站处理
	危废暂	危废暂存间设置不规范, 危废收	采用混凝土防渗的基础上加铺
	厄及音 存间	集容器为简易桶,地面未防渗,	2mmHDPE 膜强化防渗(渗透系数<
	不满足危废收集及贮存要求		$1.0 \times 10^{10} \text{cm/s}$)
	污水处	未设置应急事故水池和初期雨	新建 250m3 应急事故水池,事故状态
风险	理设施	水以且应忌事以小他和初期的	废水排入;新建 500m³ 初期雨水收集
	埋 以 施		池收集初期雨水。
		排污口设置不规范	排污口进行规范化设置
其位	他	百方工积由家土进行首县中连	本次改建完成后对全厂污染物产生情
		原有工程内容未进行总量申请	况进行总量申请

3.2 工程分析

3.2.1 项目概况

3.2.1.1 项目基本情况

项目名称: 山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目

项目性质: 改扩建

建设单位: 山西昌源酒业有限公司

建设地点: 山西省祁县贾令镇贾令村

建设规模:本项目新增生产麸曲原酒 3000t/a,大曲原酒 6000t/a。

建成后年产白酒 15000t, 其中: 麸曲原酒 9000t/a, 大曲原酒

 $6000t/a_{\circ}$

建设周期: 5个月。

总投资及环保投资:工程总投资 4600 万元,其中环保投资 47.5 万元,占总投资比例为 1.03%。

劳动定员:山西昌源酒业有限公司现有员工 200 人,本次改建项目新增员工 100 人,改建后全厂共 300 人。

3.2.1.2 地理位置及交通

本项目位于山西省祁县贾令镇贾令村,距离祁县县城直线距离约 2.6km,行政区划隶属于贾令镇管辖。项目区地理坐标: E112°20′22″, N37°23′52″之间。项目北侧为耕地,南侧为县道,紧邻县道南侧即为昌源河,西侧为空地,东侧为草地和灌木地。交通较为便利。

本项目在现有厂区内进行改建,不新增占地。

3.2.2 工程内容

3.2.2.1 项目组成

本项目改建内容主要为: 改建现有的麸曲酿造二车间为地缸大曲酿造车间, 改建现有闲置库房为大曲酿造四、五、六车间,拆除现有办公区改建为大曲酿造七车间,改建三车间,新建白酒灌装车间,同时配套建设相关辅助工程及设备等内容,现有麸曲酿造车间通过车间投料量增加及生产班时的增加产能,改建完成后可新增生产麸曲原酒 3000t/a,大曲原酒 6000t/a。本次改建工程及与现有工程衔接关系见下表。

表 3.2-2 本次改建工程及与现有工程衔接关系表

类别	项目名称	现有 6000 吨白酒工程	本次改建内容	与现有工
关 剂	一 	观有 0000 地口伯工柱	本	程关系
	酿造车间	一车间建筑面积为 3534m², 共有 42m³ 发酵池 48 个, 10m³ 甑锅 4 台; 二车间建筑面积 3038m², 共有 15m³ 发酵池 48 个,38m³ 发酵池 96 个,10m³ 甑锅 4 台;	有生产基础增加生产班次及增加投料量。	部分改 建,改建 工程正在 施工
主体 工程	AKAE TETA	三车间建筑面积 3534m²,共有 38m³ 发酵池 48 个,10m³ 甑锅 4 台;均为麸曲酿造工艺,包含蒸粮、窖池发酵、蒸馏酿造、丟糟工序。	改造厂区内现有库房等用房为四、五、六大曲酿造车间,四车间建筑面积 3038m²,有发酵缸 1928 个,容积均为 0.6m³, 五车间建筑面积 4246m²,有发酵缸 2256 个,容积均为 0.6m³, 六车间建筑面积 6451m²,有发酵缸 4120 个,容积 0.6m³, 均为大曲酿造工艺,包含蒸粮、地缸发酵、蒸馏酿造、丟糟工序	改建,已 建成
			孙陈现有办公区改建为人曲酿造七年间,建筑面积 4612.95m²,发酵缸 3400 个,容积 0.6m³,为大曲酿造工艺, 包含蒸粮、地缸发酵、蒸馏酿造、丟糟工序	改建,未建
	一体化筒仓	包括钢板仓部分、清理输送部分、散料仓和粉碎系统; 钢板仓为500T/仓*4座,热镀锌板,用于高粱、玉米的储存;清理输送部分包括下粮栅格、提升机、振动清	利用现有一体筒仓,根据生产规模的扩大增加卸粮、清理筛 分及粉碎设备运行时间	利用现有

类别	项目名称	现有 6000 吨白酒工程	本次改建内容	与现有工 程关系	
	理筛分等设备,处理能力 50T/H,用于原粮的初步清理				
		和筛分; 散料仓 120T/仓*2 座,60T/1 座,用于散料储			
		存, 粉碎系统包 1 套 WFSS65-100 粉碎设备, 粉碎能			
		力≥15T/h, 1 套 NSQ100*25 四六瓣磨粉机,粉碎能力			
		8-10T/h			
	麸曲制备车	包括制曲车间(建筑面积 1010m ²),菌种车间	在现有麸曲制备车间内每批次增加扩培量	利用现有	
	间	(353.47m²),凉曲场(200m²)和磅房(32m²)	在现有然面前每半间的母批价增加扩拓里	利用现有	
	酵母车间	建筑面积 526.53m², 酵母接种制备	在现有酵母车间内每批次增加扩培量	利用现有	
	遊壮左同	/	轻钢结构建筑面积 3200m²,建设白酒勾兑生产线 1 条,2 条	新建己建	
			自动化灌装生产线,白酒勾兑能力 5000t/a	成	
	行政办公楼	2座,1座3F砖混结构,建筑面积2318.39m²,1座1F	2座, 1座 3F 砖混结构,建筑面积 2318.39m², 1座 1F 砖混	 利用现有	
		砖混结构,建筑面积 260m², 主要功能行政办公	结构,建筑面积 260m²,主要功能行政办公	717/11分四日	
	生活宿舍区	生活完全区	1F, 有 2 处, 分别位于厂区南侧和东侧, 建筑面积分	1F,有2处,分别位于厂区南侧和东侧,建筑面积分别为	 利用现有
		别为 407.12m ² 和 64m ² ,供员工生活休息	407.12m ² 和 64m ² ,供员工生活休息	1.1).11.50r.14	
	食堂	1F,建筑面积约 385m ²	1F,建筑面积约 385m²	利用现有	
辅助	化验办公区	建筑面积 385m²	拆除现有办公区改建为大区酿造七车间,利用现有麸曲制备	改建	
工程 -	化规外公区	建巩固你 363111	车间菌种存放间一层作为化验办公区	以廷	
土作	配电室	1座,位于厂区北部的东侧,建筑面积为 187m ²	1座,位于厂区北部的东侧,建筑面积为 187m ²	利用现有	
	修配车间	1F 砖混结构建筑面积 80.78m², 砖混彩钢瓦顶结构	1F 砖混结构建筑面积 80.78m², 砖混彩钢瓦顶结构 66m², 简	利用现有	
		66m ² ,简单的焊接、设备保养,不包括喷漆	单的焊接、设备保养,不包括喷漆	一小用地件	
	水塔	2 座,储水能力 150t,直径 7m,高度 38m	2 座,储水能力 150t,直径 7m,高度 38m	利用现有	
	库房	共 5 座, 2 座建筑面积分别为 738m²和 900m²用于储存	共 5 座, 2 座建筑面积分别为 738m²和 900m²用于储存稻壳	利用现有	
	净历	稻壳子和麸皮, 3座建筑面积分别为 428m²、225m²和	子和麸皮,3座建筑面积分别为428m²、225m²和75.03m²	加力地有	

类别	项目名称	现有 6000 吨白酒工程	本次改建内容	与现有工 程关系
		75.03m²根据需要存放五金配件	根据需要存放五金配件	
	闲置库房	3 座,建筑面积分别 3038m², 4246m², 6451m², 根据 需要存放辅料及机械设备	增加发酵缸等设备,改建为大曲酿造四、五、六酿造车间	改建,已 建成
2400 亏酒库 產建 建筑		共 6 座酒库: 1 号酒库建筑面积 756.36m², 总容积 2400T; 2 号酒库建筑面积 982.98m², 总容积 2550T; 3 号酒库建筑面积 375m², 总容积 50T*15=750T; 4 号酒库建筑面积 560m², 总容积 50T*22=1100T; 5 号酒库建筑面积 875m², 总容积 2000T; 6 号酒库建筑面积 462m², 总容积 1120T; 均为全封闭砖混结构	共 6 座酒库: 1 号酒库建筑面积 756.36m², 总容积 2400T; 2 号酒库建筑面积 982.98m², 总容积 2550T; 3 号酒库建筑面积 375m², 总容积 50T*15=750T; 4 号酒库建筑面积 560m², 总容积 50T*22=1100T; 5 号酒库建筑面积 875m², 总容积 2000T; 6 号酒库建筑面积 462m², 总容积 1120T; 均为全封闭砖混结构	利用现有
	锅炉房	安装有 2 台 10t/h 燃气蒸汽锅炉,供厂区内生产用蒸汽和部分建筑采暖期供暖	新增 1 台 10t/h 燃气蒸汽锅炉,供厂区内生产用蒸汽和部分建筑采暖期供暖	利用现有
	供水工程	厂区内水井,井深 210m,开孔直径 720mm,静水位 25m,动水位 47m,出水量 30m³/h,将井水抽出至厂区内水塔后,供给厂区生产生活用水	厂区内水井,井深 210m,开孔直径 720mm,静水位 25m,动水位 47m,出水量 30m³/h,将井水抽出至厂区内水塔后,供给厂区生产生活用水	利用现有
公用工程	排水工程	全厂采取雨污分流制,雨水经厂区内管道收集后排至 厂区外昌源河;生活污水和生产废水经收集后进入厂 区污水处理站,处理后用罐车送至祁县鸿宇市政东观 污水处理厂进一步处理	食堂废水经隔油池后和生活污水进入化粪池,处理后和生产 废水进入厂区内现有污水处理站,处理达标后通过市政管网 排入祁县鸿宇市政污水处理有限公司;雨水依托厂区内现有 雨污分流管道,建设初期雨水收集池,经厂区内管道收集后 排放。	利用现有
	供电工程	由市政变电站供给,1座配电室,有2台200kva变压器及配套设施,1台发电机,供厂区用电	由市政变电站供给,新建 1 座配电室,有 2 台 250kva 变压器及配套设施,1 台发电机利用现有配电室	部分利用 现有
	供气工程	厂区内现有2台燃气蒸汽锅炉,厂设置1座燃气调压站	新增 1 台 10t/h 燃气蒸汽锅炉	新增

类别	项目名称	现有 6000 吨白酒工程		本次改建内容		与现有工 程关系
	采暖制冷	办公区、灌装车间采暖采用燃气蒸汽锅炉 调;生产车间无需采暖	户、制冷采用空	办公区、灌装车间采暖依托燃气蒸汽锅炉、 生产车间无需采暖	制冷采用空调;	利用现有
		卸粮筛分粉尘 G1: 设置 2 个侧吸罩进行收集,清理筛分粉尘 G2: 经管道负压收集,G1 与 G2 废气共同引至一套脉冲布袋除尘器进行处理,处理效率99%;	废气经收集 净化处理后, 通过1根22m 高排气筒排 放	卸粮筛分粉尘 G1: 设置 2 个侧吸罩进行收集,清理筛分粉尘 G2: 经管道负压收集, G1 与 G2 废气共同引至一套脉冲布袋除尘器进行处理,处理效率 99%;	废气经处理 后,通过 1 根 15m 高排气筒 P1 排放	为便于管 控污染物 排放情
		粉碎粉尘 G3: 2 台粉碎机产生的粉尘 经管道负压收集后,分别引至 1 套布袋 除尘器进行处理,处理效率 99%;		粉碎粉尘 G3: 2 台粉碎机产生的颗粒物经管道负压收集后,分别引至 1 套布袋除尘器进行处理,处理效率 99%	废气经处理 后,通过 1 根 22m 高排气筒 P2 排放	况,新增 一根 15m 高排气筒
环保 工程	废气	锅炉燃烧废气 G4: 2 台蒸汽锅炉采用天 并采取低氮燃烧技术后,通过 2 根 8m 高 P4 进行排放		锅炉燃烧废气 G4: 新增1台蒸汽锅炉采用5 采取低氮燃烧技术,废气通过3根8m高排 进行排放		新建
		酿造车间有机废气 G5: 酿造车间内在蒸酵过程等中会有有机废气,加强车间通见		酿造车间有机废气 G5: 酿造车间内在蒸煮、 程等中会有有机废气,加强车间通风	摊晾、发酵过	/
		酒糟恶臭 G6: 酒糟恶臭,送至酒糟暂存殖户作为饲料运走,	库,由附近养	酒糟恶臭 G6: 建设钢结构封闭酒糟库,做到 止在酿造车间内堆积酒糟恶臭采用生物除臭		新建
		污水处理站恶臭 G7: 喷洒生物除臭剂进	行除臭	污水处理站恶臭 G7: 污水处理站臭气,处理安装集气管,收集后进入 1 套生物滤池除臭95%,通过 15m 高排气筒 P6 排放		新建,未建
		食堂油烟 G8: 进入油烟净化装置处理后		进入油烟净化装置处理后经管道排放)-P. J. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	利用现有
		」运输扬尘 G9: 厂区内地面进行硬化并进	11.何17、121小,	厂区内地面进行硬化并进行清扫、洒水,以	观少 坦始70王	利用现有

类别	项目	目名称	现有 6000 吨白酒工程	本次改建内容	与现有工 程关系
	废水		以减少道路扬尘		
			厂区内食堂废水经隔油预处理后和生活污水进入化粪池,处理后和生产废水一起进入厂区内污水处理站,污水处理规模为 250m³/d,设计处理工艺采用"格栅间+初沉池+IC 厌氧反应器+AO/AO/AO+MBR 膜+混凝沉淀+过滤+消毒",处理后通过污水管网进入祁县鸿宇市政污水处理有限公司处理,污水处理设置在线监测装置,并在厂区内设 1 座 250m³应急事故水池	利用厂区内现有污水处理站及在线监测装置,在厂区内新建 1座 250m³应急事故水池、1座 500m³初期雨水收集池。	新建,未建
	地	下水	分区防渗:污水处理站内池体为重点防渗;污水管道、 生产车间、酒糟库及仓库等一般防渗;办公生活区及厂 区道路为简单防渗。	分区防渗: 危废暂存间采用防渗混凝土+2mmHDPE 膜强化防渗,渗透系数≤1.0×10 ⁻¹⁰ cm/s; 酒糟暂存库采用黏土基础防渗+混凝土路面,渗透系数≤1.0×10 ⁻⁷ cm/s; 渗滤液通过收集槽收集后送至厂区污水处理站处理; 跟踪监测: 设置背景监测井和污染扩散监测井进行跟踪监测;	新建
	世 西 体 変 物		杂质粉尘外售作为养殖饲料; 酒糟外售给养殖场作饲料; 污泥由环卫部门定期清运; 生活垃圾由环卫部门统一处置;	杂质粉尘 S1: 作为家畜饲料直接出售; 酒糟 S2: 暂存于厂区酒糟库内,日产日清,外售给附近养殖场作饲料; 污水处理站污泥 S3: 经干化后送至环卫部门指定地点; 废离子交换树脂 S4: 由厂家定期进行回收并更换; 废过滤材料 S5: 由厂家定期进行回收并更换;	改建
		危废		废矿物油、化验室废液、废包装 S6:建设 10m³ 危废暂存间, 地面采取防渗措施,定期送有资质单位处置	新建
	吗	噪声	生产设备选用低噪声设备,采用减振、降噪等措施	生产设备优先选用低噪声设备,采用减振、降噪等措施	新建

依托工程及可行性分析:

(1) 主体工程

本项目一体化筒仓(原料筒仓、散料仓及粉碎系统)依托厂区现有工程。根据建设单位提供资料,厂区购买原粮采取多次购买、减少存量的原则,本项目建设完成后,全厂原粮消耗量约为110t/d,约7-10天购入原粮,最大存储量为1100t,因此四座500t筒仓可满足本项目原粮存储要求。

厂区内有两套粉碎设备,1套 WFSS65-100 粉碎设备,粉碎能力≥15T/h,1 套 NSQ100*25 四六瓣磨粉机,粉碎能力 8-10T/h。全厂原粮需进行粉碎量约为110t/d,可知两套粉碎设备可满足本项目建成后全厂粉碎要求。

(2) 辅助工程

本次改建工程行政办公楼、宿舍、食堂等辅助工程均依托现有,且依托可 行。

根据公用工程蒸汽供应分析内容,改建完成后全厂生产用蒸汽量为26.0t/h,生活供暖用蒸汽量为0.77t/h,因此锅炉房3台10t/h蒸汽锅炉能够满足全厂生产及生活用汽量,依托现有锅炉房可行。

3.2.2.2 产品方案

本项目主要生产清香型白酒,按产品的酒精度主要为高度酒:酒精度41%vol~68%vol,本次改建项目麸曲酿造原酒3000t/a,大曲酿造原酒6000t/a,其中,5000t大曲原酒进入灌装车间进行勾兑、瓶装后外售,其余原酒进入酒库储酒罐进行散装外售。具体产品方案见下表。

	序号	产品名称	年产量	规	!格	存储方式	
	1	注	香型大曲原酒 6000t 散装 勾兑灌装	散装	1000t	酒库储罐	
	1	有 育空入曲原伯		勾兑灌装	5000t	玻璃瓶+纸盒	
2 清香型麸曲原酒 3000t				散	装	酒库储罐	
	备注: 本项目产品除瓶装白酒外,其余均不需勾兑。						

表 3.2-3 本次改建工程产品方案一览表

改建后全厂的产品方案如下表。

表 3.2-4 全厂产品方案一览表

序号	产品名称	年产量	规	!格	存储方式	
1	清香型大曲原酒	6000t	散装	1000t	酒库储罐	
1	何管空入曲原伯	勾兑灌装	勾兑灌装	5000t	玻璃瓶+纸盒	
2	2 清香型麸曲原酒 9000t 散装 酒库储罐					
条注。太师日产品除拖装白洒外,其全均不需匀 总						

3.2.2.3 产品标准

产品理化指标符合《食品安全国家标准蒸馏酒及其配制酒标准》 (GB/2757-2012)的规定;产品的理化、感官要求达到《清香型白酒标准》(GB/T 10781.2-2006)中要求,具体见下表。

表 3.2-5 《食品安全国家标准蒸馏酒及其配制酒标准》理化指标

项目	指标	检验方法			
甲醇 a/(g/L)	0.6	GB/T5009.48			
氰化物 a/(以 HCN 计)(mg/L)	0.8				
a 甲醇、氰化物指标均按 100%酒精度折算					

表 3.2-6 《清香型白酒标准》

项目	指标	备注
酒精度/ (%vol)	41~68	优级
总酸(以乙酸计)(g/L)≥	0.40	优级
总脂(以乙酸乙酯计)/(g/L) ≥	1.00	优级
乙酸乙酯(g/L)	0.6~2.6	优级
固形物 / (g/L)≤	0.40	优级
色泽和外观	无色或微黄,清亮透明,无悬浮物,无沉淀	优级
香气	清香纯正,具有乙酸乙酯为主体的优雅、协 调的复合香气	优级
口味	酒体柔和协调,绵甜爽净,余味悠长	优级
风格	具有本品典型的风格	优级

3.2.2.4 主要生产设备

本项目改建完成后全厂主要设备情况见下表。

表 3.2-7 主要设备情况表

表 3.2-7 主要设备情况表									
序号	设备名称	规格型号	单位	数量	位置	备注			
1.	全钢锥底仓(45°)	φ8.2×11C 500 T/仓	座	4	一体化筒仓	现有			
2.	下粮栅格	3 米×1.5 米	个	2	一体化筒仓	现有			
3.	卸粮坑刮板	MS25 50T/H 8.4m	条	1	一体化筒仓	现有			
4.	进筛提升机	TDTG50/28 18.3 米 50T/H	台	1	一体化筒仓	现有			
5.	双筒初清筛	TCQY100/320 50T/H	台	1	一体化筒仓	现有			
6.	振动筛(配循环风 选器)	TQLZ180×200 50T/H	台	2	一体化筒仓	现有			
7.	永磁筒	TCXT35	套	1	一体化筒仓	现有			
8.	进仓提升机	TDTG50/28 30.4 米 50T/H	台	1	一体化筒仓	现有			
9.	磨粉机	/	台	1	一体化筒仓	现有			
10.	粉碎机	/	台	1	一体化筒仓	现有			
11.	地磅	/	套	1	一体化筒仓	现有			
12.	进粉碎机提升机	TDTG30/16 20 米 15T/H	台	2	一体化筒仓	现有			
13.	进Φ5.5 仓提升机	TDTG30/16 28 米 20T/H	台	1	一体化筒仓	现有			
14.	自动润糁机	/	套	1	一体化筒仓	现有			
15.	混料装甑机	SLH300	套	6	酿造车间	现有			
16.	升降机	/	台	3	酿造车间	现有			
17.	升降机	/	台	4	酿造车间	新增			
18.	风冷式冷却器	7.5kw*2	套	12	酿造车间	现有			
19.	风冷式冷却器	11kw*1	套	5	酿造车间	新增			
20.	甑锅	φ3.6m, φ2.7m	台	12	酿造车间	现有			
21.	甑锅	φ2.8m, φ3.1m	台	4	酿造车间	新增			
22.	搅料机	/	台	12	酿造车间	现有			
23.	搅料机	/	台	12	酿造车间	新增			
24.	双梁起重机	16t	台	8	酿造车间	现有			
25.	双梁起重机	16t	台	8	酿造车间	新增			
26.	单梁起重机	10t	台	2	酿造车间	现有			
27.	发酵池	42m³、38m³	个	96	酿造车间	现有			
28.	发酵缸	$0.6m^{3}$	个	15904	酿造车间	新增			
29.	贮料池	20m³, 23.12m³	个	12	酿造车间	现有			
	l .	l .	1	1		i .			

30.	贮水池	1.5m ³	个	12	酿造车间	现有
31.	工具房	/	间	24	酿造车间	现有
32.	抓斗	/	台	12	酿造车间	现有
33.	抓斗	/	台	12	酿造车间	新增
34.	扬渣机	/	台	11	酿造车间	现有
35.	扬渣机	/	台	2	酿造车间	新增
36.	不锈钢酒桶	/	个	192	酿造车间	现有
37.	不锈钢酒桶	/	个	40	酿造车间	新增
38.	喂料机	/	台	4	酿造车间	现有
39.	喂料机	/	台	5	酿造车间	新增
40.	冷散架	13.4m	台	12	酿造车间	现有
41.	冷散架	9.6m, 14m	台	5	酿造车间	新增
42.	鼓风机	/	台	16	酿造车间	新增
43.	蒸汽灭菌锅	VXW	台	2	酵母车间	现有
44.	卡氏罐	/	个	200	酵母车间	现有
45.	不锈钢贮液池	/	个	1	酵母车间	现有
46.	搅拌机	XW03	台	8	酵母车间	现有
47.	天平	JYT1	台	1	酵母车间	现有
48.	蒸箱	1.7m	台	2	酵母车间	现有
49.	糊化锅	Ф1.8т	台	4	酵母车间	现有
50.	空压机	W0.36	台	1	酵母车间	现有
51.	汽水分离器	/	个	1	酵母车间	现有
52.	卡氏冷却池	/	个	1	酵母车间	现有
53.	浓浆泵	/	台	3	酵母车间	现有
54.	压滤机	M6V	个	1	酵母车间	现有
55.	高压锅	Ф1.8т	个	2	酵母车间	现有
56.	培养罐	Ф1.2m	个	8	酵母车间	现有
57.	恒温培养箱	DH6000 DH5000 DH3600	台	4	酵母车间	现有
58.	粉碎机	/	台	2	酵母车间	现有
59.	装甑机	/	台	1	酵母车间	新增
60.	甑桶	Ф4т	个	1	制曲车间	现有
61.	甑桶	Ф4т	个	2	制曲车间	新增
62.	水箱	1.6m	个	1	制曲车间	现有
63.	挡料板	3m	个	1	制曲车间	现有
64.	风机	/	台	16	制曲车间	现有
65.	培养池	9.2m	个	16	制曲车间	现有
66.	化验分析仪器	/	套	1	化验室	现有
67.	化验工作台	宽 1.5m	m ²	50.34	化验室	现有

		宽 0.6m				
		宽 1.2m				
68.	不锈钢储酒罐	90t/110t/70t	个	129	酒库	现有
69.	防爆离心泵	/	台	5	灌装车间	新增
70.	白酒匀化机	/	台	1	灌装车间	新增
71.	白酒过滤机	BJGY(B)-10	台	1	灌装车间	新增
72.	双级反渗透纯水设	5T/h	套	1	灌装车间	新增
12.	备					
73.	不锈钢抽酒泵	3Kw	台	9	灌装车间	新增
74.	不锈钢软管	2.5 寸	米	190	灌装车间	新增
75.	白酒自动灌装设备	/	套	2	灌装车间	新增
76.	香料箱	/	台	1	灌装车间	新增
77.	沉酒槽	/	台	2	灌装车间	新增
78.	天然气锅炉	WNS10-1.25-Q .Y	套	2	锅炉房	现有
79.	天然气锅炉	WNS10-1.25-Q .Y	套	1	锅炉房	新增
80.	软化水装置	/	套	1	锅炉房	现有
81.	脉冲布袋除尘器	BLFF40-2200	套	3	卸粮及初清,粉	现有
81.		BLFF110-2200			碎机	兆乍
82.	污水处理设施	/	套	1	污水处理站	现有

3.2.2.5 产能核算

本次改建完成后,全厂产能核算见下表

表 3.2-8 全厂产能核算表

序 号	车间	工艺	发酵周 期	年加 工批 次	年投料量 (t/a)	出酒率 (%)	产量(t)	
1	酿造一车间	麸曲清香工艺	6d	50	11960	0.46	5500	
2	酿造二车间	大曲清香工艺	28+22d	6	3640	0.43	1565	
3	酿造三车间	麸曲清香工艺	6d	50	7610	0.46	3500	
4	酿造四车间	大曲清香工艺	28+22d	6	1650	0.43	710	
5	酿造五车间	大曲清香工艺	28+22d	6	1945	0.43	836	
6	酿造六车间	大曲清香工艺	28+22d	6	3640	0.43	1565	
7	酿造七车间	大曲清香工艺	28+22d	6	3080	0.43	1324	
8	麸曲原酒							
9	大曲原酒							
10	原酒							

3.2.2.6 主要原辅材料

(1) 主要原辅材料

本次改建主要原辅用料情况见下表。

表 3.2-9 本次改建项目主要原辅材料一览表

序号	原辅材料名称	包装形式	单位	年耗量	规格	暂存位置			
			一、原	酒生产					
1	高粱	散料	t/a	18735	高粱符合	筒仓			
2	稻壳	散料	t/a	6650	GB/T8231-2007《高	库房			
3	玉米	散料	t/a	260	粱》,其他符合 GB	筒仓			
4	麸皮	袋装	t/a	620	2715-2016《食品安全国	库房			
5	外购大曲粉	袋装	t/a	2640	家标准粮食》	库房			
二、白酒灌装									
1	勾兑纯水	灌装	t/a	2143	《国家生活饮用水卫生	灌装车间			
1	4 元纯小	作衣	Va	2143	标准》(GB5749-2006)				
2	酒瓶	盒装	个	12万	/	灌装车间			
	包装盒	/	个	2万	/	灌装车间			
			三、	能耗					
1	水	/	万 m³/a	7.04	/	自备井			
2	电	/	万 kWh	3871.8	/	市政电网			
3	天然气	/	万 m³	384	《天然气》 GB17820-2018) 中二类	市政供气			

改建完成后全厂原辅用料。

表 3.2-10 全厂主要原辅材料一览表

	70 3.2 10 ±/ ±// 11 30 10 10 10 10 10 10 10 10 10 10 10 10 10								
序号	原辅材料名称	包装形式	单位	年耗量	规格	暂存位置			
			一、原	酒生产					
1	高粱	散料	t/a	33235	高粱符合	筒仓			
2	稻壳	散料	t/a	11000	GB/T8231-2007《高	库房			
3	玉米	散料	t/a	780	粱》,其他符合 GB	筒仓			
4	麸皮	袋装	t/a	1860	2715-2016《食品安全国	库房			
5	外购大曲粉	袋装	t/a	2640	家标准粮食》	库房			
	二、白酒灌装								
1	纯水	灌装	t/a	2143	《国家生活饮用水卫生	灌装车间			
1	绝 八	作表	Va	2143	标准》(GB5749-2006)	作表于问			
2	酒瓶	盒装	瓶	12万	/	灌装车间			
	包装盒	/	个		/	灌装车间			
			三、	能耗					
1	水	/	万 m³/a	12.28	/	自备井			
2	电	/	万kWh	6453	/	市政电网			

序号	原辅材料名称	包装形式	单位	年耗量	规格	暂存位置
3	天然气	/	万 m³	612	《天然气》 (GB17820-2018)中二 类	市政供气

(2) 燃用天然气

本项目气源来自于祁县市政管网,市政管网气源来自于陕京二线天然气,根据天然气气质分析报告(见附件),其气体组分见下表。

表 3.2-11 天然气组分一览表

组份	总烃	Не	H ₂	O_2	N ₂	CO ₂	H ₂ S	总硫
Mol%	97.750	0.031	0.012	0	0.287	1.920	未检出	未检出

3.2.2.7 主要经济技术指标

改建完成后全厂主要经济技术指标见下表。

表 3.2-12 全厂主要技术经济指标

	表 3.2	2-12 全)	土安坟不经》	了1日 <i>个</i> 小		
序号	指标名称		单位	数量		
1	清香型原酒		t/a	15000		
1.1	其中: 麸曲酿造原酒		t/a	9000		
1.2	大曲酿造原酒		t/a	6000		
1.2.1	大曲酿造原酒(散酒)	t/a	1000		
1.2.2	大曲酿造原酒(勾兑灌装)	t/a	5000		
2	麸曲		t/a	1800		
3	酵母		t/a	765		
4	工作制度		/	300d/a, 8h/d, 两班制		
5	全厂劳动定员		人	300		
		高粱	t/a	33235		
		稻壳	t/a	11000		
		玉米	t/a	780		
6	直排料料源 耗	麸皮	t/a	1860		
6	原辅材料消耗 	外购大曲粉	t/a	2640		
		用电量	万 kWh/a	6453.0		
		用水量	万 m³/a	12.28		
		用气量	万 m³/a	612 万		
7	总建筑面积	1	m ²	73089		

3.2.2.8 劳动定员及工作制度

本次改建工程新增员工 100 人,厂区共有员工 300 人,改建完成后新增一班蒸酒酿造,实行两班工作制,其余生产车间为单班制,行政管理为单班制,

每班8小时,年生产天数300天。

3.2.2.9 总平面布置

厂区位于祁县贾令镇贾令村南 1.2km,厂区内部平整,交通便利,南侧紧邻县道区域优势明显。厂区占地总面积为 73291.71m²,厂区具体布局考虑物流、人流、消防等方面的要求,按生产工艺采用将功能相近、联系紧密的建筑就近分区布局的形式进行合理布置。

生产区域:

项目粮食简仓清理粉碎区位于厂区南,紧邻厂区南门,方便原料的运输周转;7个酿造车间根据生产工艺分别布置有原粮的润料、蒸料、发酵、蒸酒等工艺,各酿造车间内按生产工艺流程需要科学布置,避免了物料往返运输;6个酒库分别靠近酿造车间就近布置,灌装车间位于厂区中央位置,方便管道运输线路;

公辅工程:

项目锅炉房、污水处理站及修配车间集中布置于厂区南侧,办公区及食堂位于厂区东北角,靠近东门,厂区西北角布置有化验办公区、配电室等,与主要生产区域分开布置,功能分区较为明确;

总体来看,厂区内建筑物摆放紧凑合理,节约用地,全厂的货流、人流、原料、管道等的运输应有各自线路,力求避免交叉;厂区道路按运输量及运输工具的情况合理布置,道路采用水泥地面,路面清洁;总平面中有一定的绿化面积。

因此厂区总体布置合理。厂区平面布置见下图。

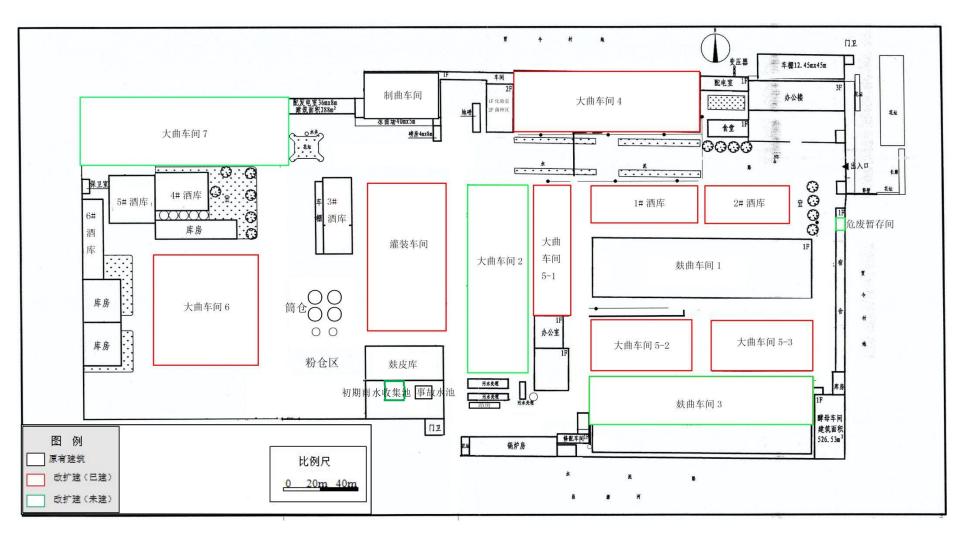


图 3.2-1 厂区平面布置图

3.2.2.10 公用工程

1、给排水

(1) 给水

本项目给水主要由厂区内水井提供,地理坐标为北纬 N37°46′51.23″,东 经 E112°16′4.96″,井深为 210m,稳定出水量 30m³/h,由水泵将井水抽出至水 塔提供一定压力动力后,供厂区生产、生活用水。

根据建设单位实际运行经验,本次改建工程各用水环节分析如下:

1) 生产用水

本次改建工程生产过程用水环节主要为酿造车间润粮、蒸粮用水、勾兑用水、设备冲洗用水、地坪冲洗用水,锅炉用水、化验用水、灌装用水等。

a.润粮用水

高粱在蒸煮之前要进行浸泡,根据生产经验,用水量为原粮质量的 20-50%,取 40%,本次改建工程高粱年新增量为 19000 吨,则润粮用水年用量为 7600m³/a,年生产 300d,润粮日用水量为 25.33m³/d。润粮用水在粮食浸泡吸水膨胀过程中吸收,部分用水被带入蒸粮程序,在搅拌等过程中损耗。

b.蒸粮及拌料用水

蒸粮及拌料过程中需要加入一定量的水,根据实际经验,加水量为原粮质量的 30%,本次改建工程高粱年用量为 19000 吨,则蒸粮及拌料加水年用量为 5700m³/a,年生产 300d,蒸粮及拌料日用水量为 19.0m³/d。

c. 制曲用水

曲粮润粮用水系数为 0.3t 水/t 曲料,本次改建工程麸曲制备共 600t,制曲润粮年用水量 180m³/a,日用水量 0.6m³/d。

d.酵母制备用水

酵母糊化用水系数为 0.4t 水/t 酵母,本次改建工程酵母制备共 255t,酵母制备年用水量 102m³/a,日用水量 0.34m³/d。

e.设备冲洗用水

根据建设单位实际运行经验,生产过程中,主要为甑锅和发酵缸需定期进行清洗,酵母制备车间设备冲洗,参考建设单位运行经验,设备每 20d 冲洗一

次,本次改建工程冲洗一次用水量约为 60m³,则设备冲洗日用水量为 3m³/d; f.地面冲洗用水

本次改建工程需要冲洗的车间建筑面积约为 5000m^2 , 地面冲洗用水量按 $0.5\text{L/m}^2\cdot\text{d}$, 用水量为 $2.5\text{m}^3/\text{d}$, $750\text{m}^3/\text{a}$:

g.锅炉用水

本项目锅炉补充水为软化水,锅炉房内有软化水制备系统,采用钠型阳离子树脂交换法,NaCl 为再生剂,制备工艺为: 生水→钠离子交换器→软化水箱→软水泵→除氧器→除氧水箱。

本次改建新增蒸汽用量约为 18t/h, 年运行 300d, 运行时间为 14h/d。软水制备率按 90%计算,则锅炉新鲜日用水量为 280m³/d,年用水量为 84000m³/a。

h.化验用水

参考建设单位的运行经验,本次改建工程新增化验用水量按 1.0m³/d 计算; i.勾调用水

本次改建勾调用纯水制备采用二级反渗透工艺,选用规模为 3t/h 双极反渗透设备,制备效率为 70%,出水水质达到《国家生活饮用水卫生标准》(GB5749-2006),每吨原酒勾兑纯水使用量为 0.3t/t 原酒,本次改建工程每年勾兑原酒约 5000t,则日用新鲜水量为 7.14m³/d。

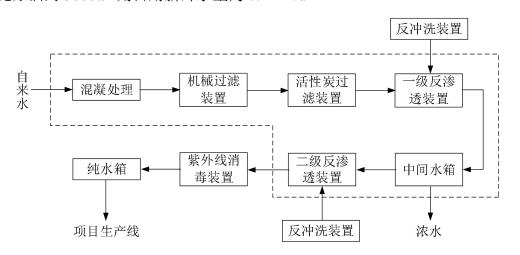


图 3.2-2 纯水生产工艺流程图

j. 洗瓶用水

洗瓶用水按 0.5L/个核算,项目日用新瓶 4.0 万个,用水量为 20m³/d,其中 60%的用水量使用过滤除杂后的洗瓶废水,则本次改建工程新增新鲜水用量为

 $8m^3/d_{\circ}$

2) 生活用水

本次改建新增员工 100 人,员工用水量按 50L/人·d 计算,则新增生活用水量 5m³/d。

- (2) 排水
- 1) 生产废水
- a. 高浓度有机废水

高浓度有机废水主要由酿造车间产生,包括蒸煮和蒸馏过程产生的锅底水、 发酵过程产生的黄浆水。

锅底水:

在粮食蒸煮及蒸酒过程中有一部分配料漏入底锅,致使底锅废水中含大量有机污染物。根据业主提供资料,生产工艺底锅水产生量约为 2.5t/t 原酒,据此估算出本次改建工程产生的底锅水约为 22500t/a, 75m³/d。

黄水:

又称窖底水,主要包括发酵过程窖池和地缸下层渗漏的黄色淋浆水,该部分水属于高浓度有机废水,根据建设单位实际运行经验,该部分废水产生量约0.4t/t原酒,据此估算出本次改建工程产生的黄水约为3600t/a,12m³/d。

b. 设备冲洗废水

按用水量的80%计,产生量为2.4m³/d。

c.地面冲洗废水

按用水量的80%计,产生量为2.0m³/d。

d.锅炉排水

锅炉定排污水一般为补水量的 2%-5%, 按 3%计,则软水排水量为 5.94m³/d;

e. 软化水制备系统产生的含盐废水,排水量为28.0m³/d。

f.纯水系统排水

制备纯水日用新鲜水量为 7.14m³/d, 设备纯水制备率为 70%, 则排放水量为 2.14m³/d。

g.洗瓶废水

冲洗水集中到收集池中,经过滤杂质后,重新回到洗瓶工序,实现循环利用,少量的洗瓶废水定期外排,排放量约为 2.0 m³/d,600 m³/a。

h.化验排水

化验废水量按用水量80%计,产生量为0.8m³/d计算。

2) 生活污水

本次改扩建新增员工100人,产物系数取80%,则新增排水量4m3/d。

3) 初期雨水

厂区实行雨污分流,雨水在厂区内汇流后经雨水排口排入厂区外市政雨水管网。

1、雨水量计算参照晋中市暴雨强度公式:

 $q=1736.8(1+1.08LgT)/(t+10)^{0.81}$

式中:

q: 暴雨强度 (L/s.hm²);

T: 重现期 a; 一般取 1-3a, 本次取 2a

t: 降雨历时 min; 取 15 min

则q=169.7L/s.hm²

2、初期雨水量计算公式如下:

 $Qy=\Psi \cdot q \cdot F \cdot t$

式中:

Qy—设计雨水流量 (L/s);

 Ψ 一径流系数; 取 0.9

q—暴雨强度(L/s•ha);

F—汇水面积(ha),根据建设单位提供资料,取 3.23ha;

t—集水时间, 15 分钟。

则本项目初期雨水量为443.99m3。

表 3.2-13 本次改建工程用排水情况一览表

序		用水类型	用水指标	用水单位	日用水量	日排水量	
序号		用小头至	/17/11日/小	用小平位	(m^3/d)	(m^3/d)	
1		生活	50L/人·d	100 人	5.0	4.0	
2		润粮用水	原粮的 40%	19000t 高 粱	25.33		
3		蒸粮及拌料用 水	原粮的 30%	19000t 高 粱	19.0	黄浆水、锅底水 87	
4		制曲	0.3t/t 曲料	600t 麸曲	0.6		
5		酵母	0.4t/t 酵母	255t 酵母	0.34		
6	生	地面冲洗	$0.5L/m^2 \cdot d$	5000m ²	2.5	2.0	
7	产	设备冲洗	60m³/次	20d,1 次	3.0	2.4	
8	,	检验用水	/	/	1.0	0.8	
9		软化装置(锅炉)	锅炉蒸发量 252m³/d, 制备率 90%	18t/h, 14h/d	280	软水 7.56 含盐废水 28.0	
10		洗瓶用水	0.5L/个	40000 个/d	(其余回 用) 8.0	2.0	
11		勾调用水	0.3m³/t 原酒	5000t 原酒	7.14	2.14	
		合计(新	「鲜水)		351.91	135.9	

改建完成后全厂给排水情况:

表 3.2-14 全厂用排水情况一览表

			V C C . = 1 .	T/ /11111/11/11/06 .			
序		用水类型	用水指标	用水单位	日月	用水量	日排水量
号		用小矢至	用/八1目/小	用水平型	(1	m^3/d)	(m^3/d)
1	生活		50L/人·d	300 人	15.0		12.0
2		润粮用水	原粮的 40%	33500t 高粱	4	4.67	
3		蒸粮及拌料用 水	原粮的 30%	33500t 高粱		33.5	黄浆水、锅底水 145
4		制曲	0.3t/t 曲料	1800t 麸曲		1.8	143
5		酵母	0.4t/t 酵母	765t 酵母		1.02	
6		地面冲洗	0.5L/m ² ·d	6000m ²		3.0	2.4
7	生	设备冲洗	90m³/次	20d,1 次		4.5	3.6
8	产	检验用水	/	/		1.5	1.2
				采暖期按 27t/h,		420	软水 11.34
9		软化装置(锅	软水制备率	14h/d		420	含盐废水 42.0
9		炉)	90%	非采暖期按	44	04.44	软水 10.92
				26t/h, 14h/d	40	J4.44	含盐废水 40.44
10		洗瓶用水	0.5L/个	4.0 万个		8	2.0
11		勾调用水	0.3m³/t 原酒	5000t 原酒	,	7.14	2.14
12		绿化	$0.28 \text{m}^3/\text{m}^2 \cdot \text{a}$	1500m ²	2	(回	0
13		道路洒水	0.3L/ m ² ·次	6000m ² ,	1.8	用)	0

	采暖期	543.93	221.68
合计 (新鲜水)	非采暖期	528.37	215.9(部分回用
	11 /10-12/93	320.37	后)

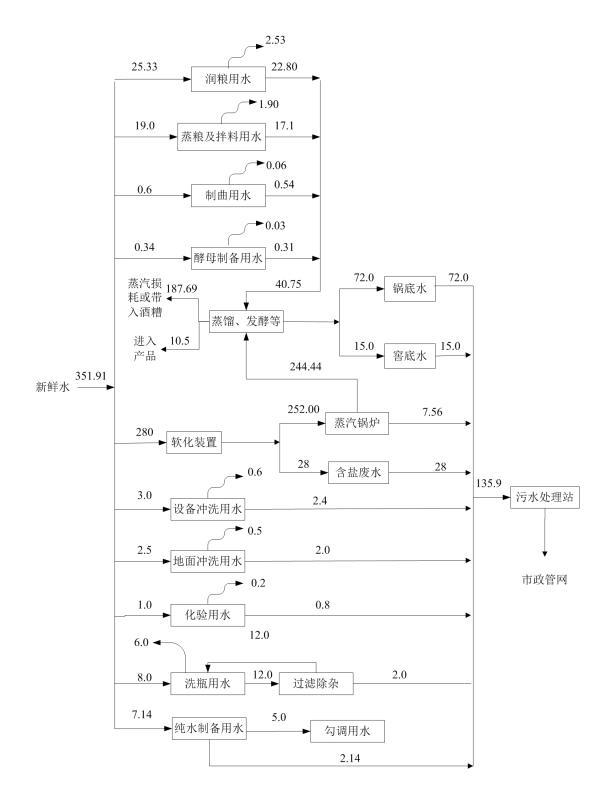


图 3.2-3 本次改建工程水平衡图 (单位: m³/d)

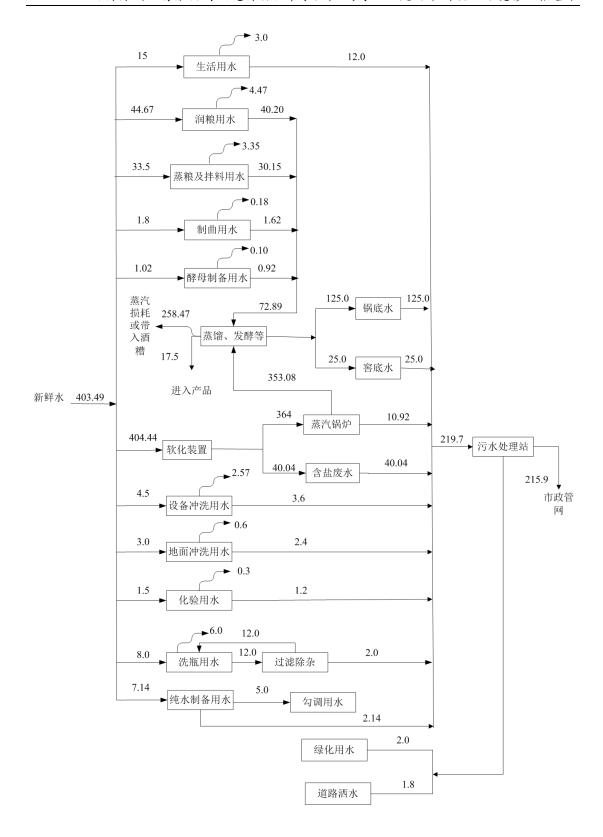


图 3.2-4 全厂非采暖期水平衡图 (单位: m³/d)

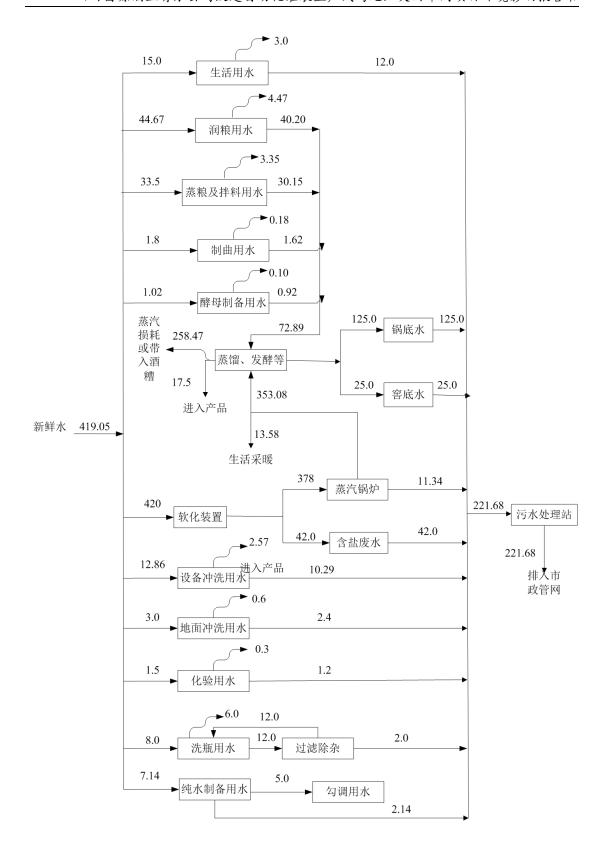


图 3.2-5 全厂采暖期水平衡图(单位: m³/d)

2、采暖制冷

本项目办公区、灌装车间及生活区采暖及设施依托锅炉房 2 台 10t/h 燃气蒸汽锅炉,制冷采用空调;生产车间无需采暖及制冷。

3、供电

本项目用电由市政电网提供,本次改建工程新增配电室一座,共有配电室 两座供全厂生产及生活用电,共有 4 台 200kva 变压器及配套设施,该项目除消防用电、事故用电、消防站用电为二级负荷外,其他工艺设备负荷均为三级负荷,设备用电电压为 380V/220V,全厂无高压用电设备,供电的可靠性有保障。另两座配电室内分别设置 1 台 400kW 柴油发电机组,作为厂区的消防电源及二级负荷的备用电源。

4、蒸汽供应

本项目用气由市政天然气管网提供,厂区内现有燃气调压站 1 座,本项目生产用蒸汽及办公楼冬季采暖均由 2 台 10t/h 的燃气蒸汽锅炉供给。

(1) 供暖

本项目冬季办公以及生活区域需要进行供暖,采暖负荷如下表所示。总供暖负荷为 0.45MW,考虑到热网热损失系数,总热负荷为 Q=0.45×1.2=0.54MW,即 0.77t/h。

序号	建筑物名称	建筑物面积(m²)	采暖热负荷(W/m²)	耗热量 106W	
1	办公区 1	2319	65	0.15	
2	办公区 2	260	65	0.017	
3	食堂	186	65	0.012	
4	生活宿舍区1	407	65	0.026	
5	生活宿舍区 2	64	65	0.0042	
6	化验室	385	65	0.025	
7	灌装车间	3446	65	0.22	
	合计	7067	65	0.45	

表 3.2-15 冬季供暖负荷一览表

(2) 生产用汽

生产用汽主要为蒸粮、蒸酒、麸曲和酵母制备过程和管网损失。本项目蒸汽平衡如下图所示。根据建设单位运行经验,厂区内新增生产用蒸汽量分别为:蒸酒 10t/h,蒸粮 5.6t/h,麸曲制备 1.2t/h,酵母制备 1.2t/h,共需生产用蒸汽量为 18.0t/h。

本次改建完成后全厂共需生产用蒸汽量为:蒸酒 18t/h,蒸粮 5t/h, 麸曲制备 1.4t/h,酵母制备 1.6t/h,共需生产用蒸汽量为 26.0t/h。

根据能耗分析,3台10t/h能够满足全厂生产及生活用汽量。项目的蒸汽平 衡如下图所示。

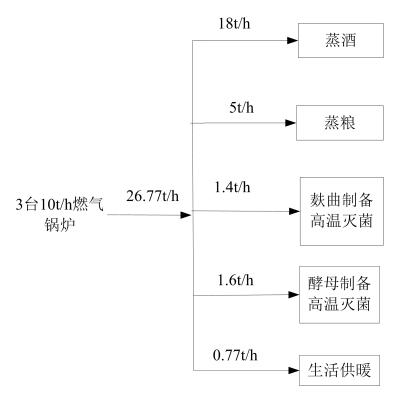


图 3.2-6 全厂蒸汽平衡图

3.2.3 工艺流程及产污节点

3.2.3.1 生产工艺

(1) 生产原理

粮食生产白酒的主要原理是粮食中的淀粉在淀粉酶的作用下水解为葡萄糖。

葡萄糖再在酵母菌作用下反应生成乙醇

$$C_6H_{12}O_6$$
 一酒化酶 $2C_2H_5OH+2CO_2$ 葡萄糖 酒精 二氧化碳

因此,白酒生产的制曲过程,就是生产用于酒精发酵生产用的酶,理论上 100kg 淀粉可生成 111.12kg 葡萄糖,100kg 葡萄糖可生成 51.1kg 酒精,高粱的 淀粉含量一般为 60-65%,根据企业实际生产过程,一般 1t 粮食可生成 0.43-0.47t 酒(含酒精 65%)。

本项目改建完成后产品包括清香型大曲酒和清香型麸曲酒,大曲酒直接购买成品大曲,麸曲酒采用的麸曲及酵母为自制。生产好的原酒部分进入罐区直接散装外售,部分原酒由罐区经管道送入灌装车间进行勾兑、装瓶及检验后包装外售。

3.2.3.2 清香型麸曲原酒制备---清烧清香工艺

(1) 原粮处理:

①清理进仓

卡车运输来的原料散料,经地磅称重后由下粮栅格直接卸料至卸粮坑内,然后通过机械化斗式提升机提升至一定高度,物料经重力沉降室清理掉一部分较大石块及杂质后,再由风机负压送入振动清理筛进行筛分清理,可清理掉原粮中灰尘及较轻杂质。经筛分清理后,物料在筛子出料口自流到永磁筒内,清除掉具有磁性的铁块等物质,然后经过计量后自流进入进仓提升机,仓顶通过埋刮板输送机输送到粮食立筒仓内储存,杂质经溜管自流至杂质料斗。

②自动化出仓

根据生产需要,高梁通过阀门控制进入到仓底的埋刮板输送机内,经计量后运送至散料仓内,以备进入下一步粉碎工序。

③原粮粉碎

高梁破碎度要求随生产工艺而变化。原料破碎越细,越有利于蒸煮糊化, 也有利于和微生物、酶的接触。麸曲酿造高粱磨成细粉,粉碎度不超过 20%。

本工艺原料粉碎采用密闭型磨粉机,同时利用除尘风机为系统提供微负压, 保证了系统及周围环境粉尘量在可控范围内。该工艺采用窖池、固态分离发酵 法。所用原料和回醅混匀后进行蒸料糊化,然后扬晾,加入麸曲、酵母和水,继续糖化发酵,再进行蒸馏的操作法。

(2) 原酒酿造工艺:

- ①配料、润料:破碎后的高梁送至酿造车间,配比加入一定量的清蒸后稻壳、回醅用凉水进行润料。配料时要根据原料品种和性质、气温条件、生产设备、麸曲及酵母的种类和质量等因素,合理配料,一般普通酒工艺的粮醅比要求在1:4。
- ②糊化:将润好的配料均匀撒入进行蒸煮,原料与回醅混合,能吸收回醅中的酸和水分,促进原料吸水膨胀和糊化。
- ③摊晾冷却: 糊化完成后采用风冷式冷却器进行连续通风冷却。在冷散架帘子上推匀,降温。冬季要求品温降到 20~30℃,夏秋季要求品温降到室温。
- ④拌料、发酵: 渣醅冷却到适宜温度即可加入麸曲、酵母和水,搅拌均匀。加曲温度一般在 25~35℃,冬季比入池温度高 5~10℃,夏季比入池温度高 2~3℃,一般用曲量为原料量的 6~10%。拌匀后酒糟入池发酵。一般入池温度应在 15~25℃,采用塑料薄膜封池,在气温高时,更应严密封池,并可适当进行踩醅。发酵期为 5-7 天。
- ⑤蒸酒:发酵 5-7 天后,出客池的糟醅单独蒸酒,蒸酒后根据生产安排部分发酵糟醅按照续糟投粮的方式继续入客池发酵,部分则直接取酒后作丢糟处理。

⑥原酒分级并罐

根据蒸酒过程产酒的不同时段,将不同级别的原酒用泵将原酒打至储酒区。

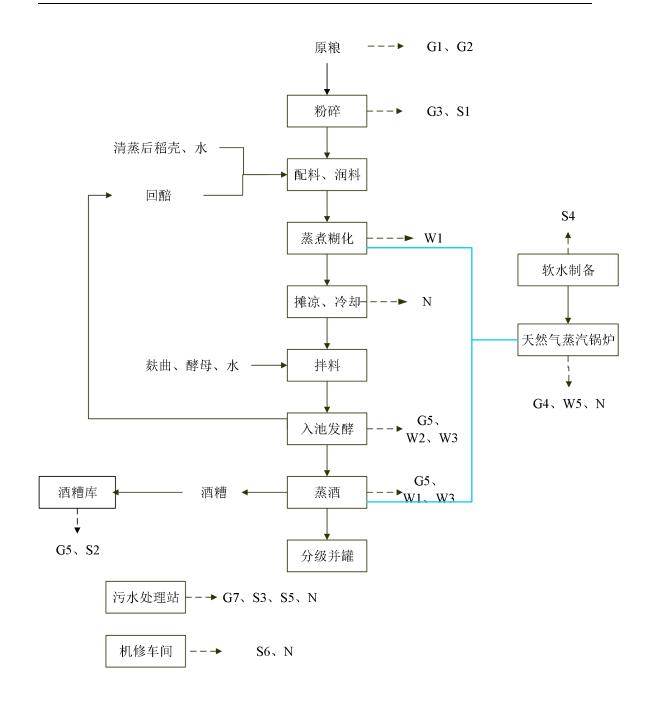


图 3.2-7 麸曲原酒制备工艺流程

(3) 麸曲制备工艺:

该工艺在制曲车间进行,位于厂区北侧,主要用于制备麸曲。

该工艺采用麸皮为主要原料,配入10%-15%的稻壳以增加疏松透气程度,将原料摊开加入热水进行润料,并采用扬料机翻打消除疙瘩堆成丘形,一般润料1小时后通入蒸汽进行闷蒸灭菌,蒸煮40min后经风冷至38-40°C,接入种曲(特殊曲种)后入曲室堆积进行控温控湿培养,若干小时后即可出曲室为麸

曲成品,一般出室后立即使用,贮存时间不超过 24h。

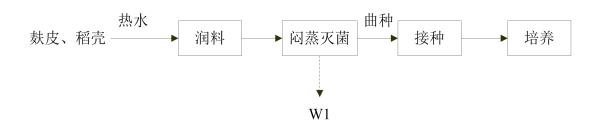


图 3.2-5 麸曲制备工艺

(4) 酵母制备工艺:

玉米经散料仓进入粉碎设备磨粉后,送至酵母车间进行加水糊化,降温到60℃后加入麸曲(添加量为投粮量的20%)进行糖化,再打入缓冲罐进行灭菌,利用蒸汽灭菌后再打入发酵罐,接入酵母菌,在恒温培养箱中进行发酵培养,培养完成后打入成品罐暂存。

图 3.2-6 酵母制备工艺流程

3.2.3.3 清香型大曲原酒制备----清蒸二次清大曲清香工艺

(1) 原粮处理:

①清理进仓

卡车运输来的原料散料,经地磅称重后由下粮栅格直接卸料至卸粮坑内,然后通过机械化斗式提升机提升至一定高度,物料经重力沉降室清理掉一部分较大石块及杂质后,再由风机负压送入振动清理筛进行筛分清理,可清理掉原粮中灰尘及较轻杂质。经筛分清理后,物料在筛子出料口自溜到永磁筒内,清除掉具有磁性的铁块等物质,然后经过计量后自流进入进仓提升机,仓顶通过埋刮板输送机输送到粮食立筒仓内储存。在该工序过程清除的大小杂质经溜管自流至杂质料斗内,由运粮厂家自行回收。

②自动化出仓

根据生产需要,高梁通过阀门控制进入到仓底的埋刮板输送机内,经计量后运送至散料仓内,以备进入下一步粉碎工序。

③原粮粉碎

高梁破碎度要求随生产工艺而变化。原料破碎越细,越有利于蒸煮糊化,也有利于和微生物、酶的接触。由于大曲酒酿造一般周期比较长,醅中所含淀粉浓度较高,若破碎过细会造成升温快,醅子发黏,容易污染杂菌,故大曲酿造高粱要求破碎成 4-6 瓣/粒,

本工艺原料粉碎采用密闭型磨粉机,同时利用除尘风机为系统提供微负压,保证了系统及周围环境粉尘量在可控范围内。清蒸二次清大曲清香工艺采用传统的"清蒸二次清"、地缸、固态分离发酵法。所用原料和辅料清蒸,然后使用。一般原料蒸煮后,加曲放入陶缸中发酵 28 天,再取出蒸馏,把蒸过的酒醅再加曲发酵 22 天,再蒸馏,充分利用了原料中的淀粉,然后把酒糟作为饲料。

(2) 原酒酿造:

- ①润粮: 润粮的目的是使高粱吸收一定量的水,以利于糊化,吸收速度与能力与原料破碎度、水温有关。用水量为原料量的 20-50%,水温 95℃左右,混合拌匀后堆积 20~24 小时,并在堆料层进行覆盖,在堆积润粮过程中翻动 2~3 次品温可升高达 45~50℃。
- ②蒸粮:将润糁均匀撒入,从筒底通入蒸汽,待蒸汽上匀后,再用 60°C 热水泼在表面以促进糊化,料蒸后要求"熟而不黏,内无生心,有糁香味,无异臭味"。
- ③摊晾、配料加曲:将蒸好的粮食及时摊晾,采用风冷进行冷却,避免粮料过粘,降温后的粮料与清蒸好的稻壳降温至 30-35℃,加入外购的大曲粉混合均匀。所购大曲为颗粒状可直接使用,无需经过粉碎。
- ④大渣入缸发酵:采用地缸(陶瓷缸)作发酵容器,埋入地下,大渣入缸时品温控制在10~16℃,夏季则越低越好,入缸时水分为52~58%,水分过低,糖化发酵不完全;反之发酵不正常,酒味寡淡不醇厚。缸顶用石板盖紧,并用清蒸后的稻壳封口,再加上稻壳保温。发酵时要求前期升温缓慢,中期保持一定高温,后期缓慢降落,掌握"前缓、中挺、后缓落"的发酵规律。发酵期为28

天。

⑤出缸蒸酒:发酵 28 天后,把成熟酒醅挖出,加入酒醅质量 13%的辅料稻壳,拌匀装入甑锅蒸馏。装甑要求"轻、松、薄、匀、缓",缓汽蒸酒,蒸酒快结束时,加大蒸汽追尾。控制流酒速度约 3 公斤/分钟,流酒温度控制在 25~30℃,并在接酒时做到截头去尾,每甑约截酒头 1kg,酒度在 75%以上,单独储存,随"酒头"后流出的叫"大渣酒",这种酒含酯量很高。蒸馏液的酒精度随着酒醅中酒精的减少而不断降低。当流酒的酒度下降至 30%以下时,以后流出的酒称尾酒,待下次蒸馏时回入底锅进行重新蒸馏。

⑥二渣冷散、发酵、蒸馏

为了充分利用原料中的淀粉,提高淀粉利用率,蒸完酒后的大渣酒醅还需冷散、发酵一次,这叫二渣冷散、二渣发酵。二渣的整个冷散、发酵操作原则上和大渣相同。

将大渣酒醅缓慢推平推匀,降温。冬季要求降温至 20-30℃,夏秋则要求降到室温。均匀加入大曲粉和一定量水,然后再次下缸发酵,二渣发酵期为 22 天。

二渣蒸甑时间 35 分钟左右,流酒时间 25 分钟左右,蒸出来的酒,叫二渣酒。大渣酒与二渣酒各具特色,入库贮存备用。

⑦原酒分级并罐

按大渣酒、二渣酒、酒头酒分开放在不同的酒罐,用泵打至储酒区。酒库 须保持清洁卫生,经常通风,防止产生臭味和毒霉生长。

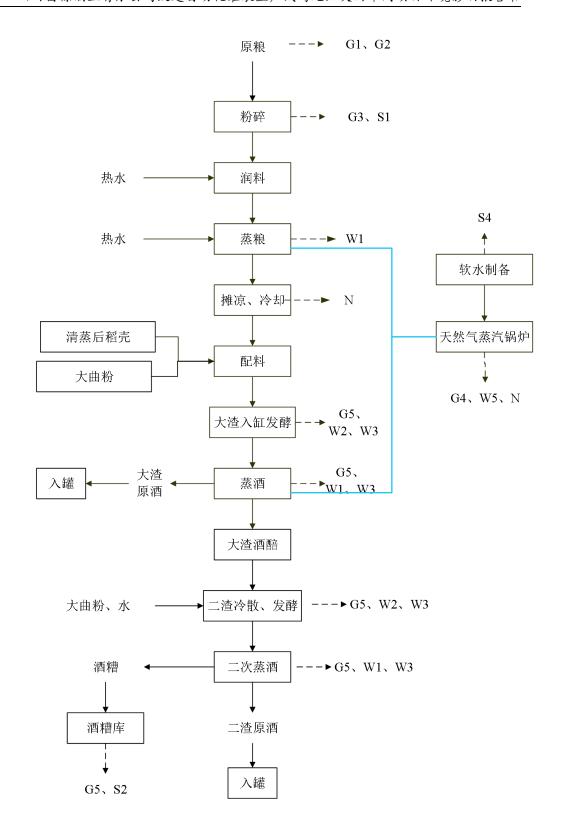


图 3.2-8 大曲原酒制备工艺流程

3.2.3.4 灌装车间工艺

(1) 过滤

将存放于成品酒罐中的半成品原酒经过滤机过滤后,可去除原酒中杂质, 过滤后酒液清亮透明,口感绵软。

(2) 勾调

将过滤后的不同质量等级原酒与食品添加剂进行混合,在匀化机内按比例 要求用制备后的纯水勾调成不同度数的白酒。

(3) 检验

检测中心的任务是对进厂的原材料和本厂生产的成品进行检测、质量控制,配合各个车间生产的顺利进行。产品酒化验分析内容主要为满足《食品安全国家标准蒸馏酒及其配制酒标准》(GB/2757-2012)、《清香型白酒标准》(GB/T 10781.2-2006)中产品的理化、感官要求后进入灌装程序。质检人员取回勾调好的酒样,经过品评检验分析,确定酒体是否合格,合格酒进入灌装工序。

(4) 灌装、灯检

采用自动酒水灌装机进行装瓶,而后再进行灯检以查验瓶中的杂质及悬浮物,从而能防止不合格产品的漏检。

(5) 压盖、贴标、喷码

将酒体进行扣盖、贴标及喷码。

(6) 装箱入库

对瓶装酒进行装箱、封箱, 存入成品库内待售。

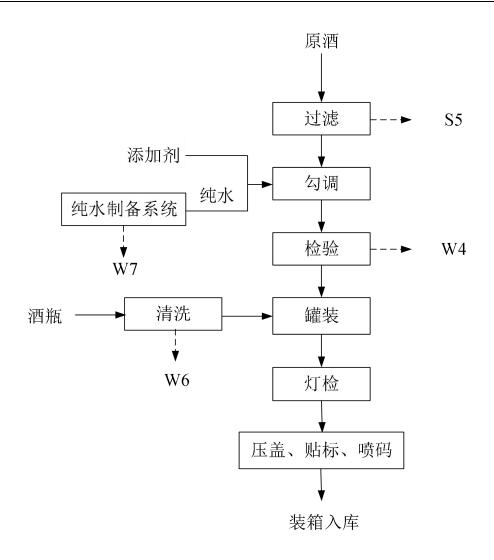


图 3.2-9 灌装车间工艺流程图注: G 废气; W 废水; N 噪声; S 固体废物

3.2.4 物料平衡

表 3.2-16 本次改建工程原酒生产物料平衡表

公 5.2-10 中八次 是工程从捐工/ 物杆 1 岗 农									
投	入	产出							
名称	数量(t/a)	名称	数量(t/a)						
高粱	高粱 19000		9000						
稻壳	6650	酒糟	24300(30%为带入水)						
玉米	260	粉尘杂质	19.0						
麸皮	620	废水	26100						
外购大曲粉	2640	损失蒸汽	49017						
新鲜水	13581	水、气损耗	7647						
蒸汽	73332								
合计	116083	合计	116083						

投	入	产出			
名称	数量(t/a)	名称	数量(t/a)		
高粱	33500	原酒	15000		
稻壳	11000	酒糟	40500(30%为带入水)		
玉米	780	粉尘杂质	33.5		
麸皮	1860	废水	45000		
外购大曲粉	2640	损失蒸汽	70251		
新鲜水	24297	水、气损耗	9216.5		
蒸汽	105924				
合计	180001	合计	180001		

表 3.2-17 全厂原酒生产物料平衡表

3.2.5 污染源分析与治理措施

3.2.5.1 施工期

本项目灌装车间白酒过滤、勾兑及灌装一体化设备已安装完毕;污水管网已施工完毕;二车间内现有窖池已拆除完毕,更换为地缸正在进行;拆除现有办公用房改建为大曲酿造七车间未动工。施工时间约2个月,施工期较短。仅涉及少量土建施工过程,施工过程中有少量噪声和固体废弃物产生。

(1) 施工废气

本项目灌装车间白酒过滤、勾兑及灌装一体化设备已安装完毕; 二车间内现有窖池已拆除完毕, 更换为地缸正在进行; 拆除现有办公用房改建为大曲酿造七车间未动工。仅有少量土建施工过程, 场地开挖、清理、进出施工现场车辆引起的道路扬尘较大, 原材料堆存、拆除办公用房、建筑结构施工、设备安装等产生量较小或不产生扬尘。

(2) 施工废水

施工期废水主要为施工人员的生活污水,项目施工装修时间约 2 个月,施工人员约 20 人,施工人员不在现场食宿,用水量按 30L/人·d (根据《给排水设计手册》)计,生活污水产生量按日用水量的 80%计,则生活污水最大排放量为 0.48m³/d,排入厂区现有污水处理站处理。采取以上措施后,本项目施工期废水对周围环境影响较小。

(3) 施工噪声

施工场地噪声主要是设备安装、物料装卸噪声。

施工场地噪声源通常主要为设备安装或物料装卸时使用的高噪声施工机

械,单体噪声源强通常在80dB(A)以上。施工期存在大量设备交互作业,且在场地的位置及使用率均可能出现较大变化。本项目施工阶段一般均为室内作业,经过墙体隔声等防治措施,噪声传播一般可控制在50m范围内,受影响范围较小。

(4) 施工固体废物

施工期间产生的固体废物包括设备的废弃包装材料、拆除二车间的建筑垃圾和施工人员生活垃圾。废弃包装材料经收集后及时清运,可外售给物资回收部门:生活垃圾主要为施工人员废弃物品,产生量较少,交由环卫统一清运。

综上所述,施工期产生污染物较少,与施工期同步,待施工结束后可恢复 至现状水平,预计不会对周边环境产生明显影响。

3.2.5.2 营运期

本次改建工程污染物产生情况及治理措施:

1、废气

(1) 原粮卸料粉尘 G1

高粱、玉米在卸料过程中会产生一定量的粉尘。

现有环保措施:建设单位在卸料坑设置有两个侧吸罩,卸料过程产生的废气经集气罩进行收集,风机最大处理风量为8000m³/h,收集效率为90%。

(2) 振动筛分粉尘 G2

现有环保措施: 原料在卸料后、入筒仓前, 经重力沉降后负压进入振动筛分设备, 在振动筛分过程中会产生一定量的粉尘, 经负压管道收集, 该工序风机最大风量为 6000m³/h, 收集效率 100%;

振动筛分产生的粉尘与卸粮过程产生的粉尘一起送至一套脉冲式布袋除尘 设备进行处理,处理效率为99%;

原粮卸料粉尘和振动筛分粉尘经收集处理后最终通过一根 15m 高排气筒排放,参考本项目自行监测数据卸粮筛分粉碎过程粉尘有组织排放浓度最大为 8.1mg/m³,本次粉尘有组织排放浓度取 10mg/m³;按照最大工作负荷进行计算,两个工序运行最大风量为 14000 m³/h。根据仓储卸粮能力 50t/h,本次改扩建建卸粮工序及振动筛分工序新增年工作时间 385h,则卸粮过程、振动筛分过程新

增粉尘有组织排放量为 0.054t/a; 卸粮过程废气收集效率为 90%,则无组织粉尘产生量为 0.389t/a,卸粮坑内采用减速淌板,降低物料在卸料坑内的下降速度,同时配置自动调速输送机减少原料进料波动,使卸料坑内通风截面积相对稳定,可减少粉尘上扬和外溢,采取上述措施后卸粮过程无组织粉尘排放量约为产生量的 10%,则新增无组织粉尘排放量为 0.039t/a。则卸粮过程和振动筛分过程粉尘排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 中二级限值的要求。因此,可以实现达标排放,不会对周边环境及区域大气环境造成影响。

除尘器参数:过滤面积 400m²,过滤风速 0.6m/min,滤袋材质为涤纶针刺 私。

以新带老措施:新增一根 15m 高排气筒。

(3) 粉碎工序粉尘 G3

本项目需要对原料(高粱、玉米)通过粉碎机粉碎,粉碎过程中会产生粉尘,1#粉碎机粉碎麸曲原酒用高粱和玉米,粉碎粮食量约5260t,粉碎机粉碎能力≥15T/h,则年运行351h。2#粉碎机粉碎粮食量约14000t,粉碎机粉碎能力8-10T/h,按10T/h计,则年运行1400h。

现有环保措施: 粉碎工序 2 台粉碎设备粉碎过程产生的粉尘经管道负压收集(收集效率 100%)后,分别引至 1 套布袋除尘器进行处理,处理效率为 99%,处理最大风量分别为 10000m³/h、6000m³/h。

参考本项目自行监测数据卸粮筛分粉碎过程粉尘有组织排放浓度最大为8.1mg/m³,本次粉尘有组织排放浓度取 10mg/m³,则两台粉碎机粉尘新增排放量为0.224t/a。采取上述措施后,粉碎过程粉尘排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 中二级限值的要求(3.5kg/h)。因此,可以实现达标排放,不会对周边环境及区域大气环境造成影响。

除尘器参数:过滤面积 500m²,过滤风速 0.6m/min,滤袋材质为涤纶针刺毡。

因此,现有措施可行。

(4) 燃气锅炉废气 G4

本项目新增1台10t/h的燃气蒸汽锅炉供生产用汽。蒸汽锅炉工作时间为

300d, 日运行时间 14h。

a.废气量

参考本项目自行监测数据,现有两台 10t/h 锅炉监测工况运行负荷为 90%,燃用天然气,锅炉型号及燃烧介质相同,锅炉烟气量监测值为为 7300-8000Nm³/h,则本项目锅炉烟气量取值 7500Nm³/h。

b.颗粒物排放量

类比同类型锅炉,颗粒物排放浓度可达到 5mg/m³以下,本次颗粒物排放浓度取 5mg/m³,则排放量为 0.158t/a;

c.SO2排放量

根据天然气气质分析报告,本项目所用天然气成分不存在 S,本次评价取值 SO_2 产生浓度为 $3mg/m^3$, SO_2 排放量为 0.095t/a。

d.氮氧化物的排放量

本项目锅炉采用低氮燃烧技术(主要通过:①烟气再循环法,主要是利用一部分温度较低的烟气返回燃烧区,含氧量较低,从而降低燃烧区的温度和氧浓度,抑制氮氧化物的生成;②二段燃烧法,该法是目前应用最广泛的分段燃烧技术,将燃料的燃烧过程分阶段来完成,第一阶段燃烧中,只将总燃烧空气量的70%~75%(理论空气量的80%)供入炉膛,使燃料在缺氧的富燃料条件下燃烧,能抑制NOx的生产,第二阶段通过足量的空气使剩余燃料燃尽,此段中氧气过量,但稳定低,生成的NOx也较少,这种方法可使得烟气中的NOx减少25%~50%。

参考本项目自行监测数据现有 10t/h 燃气锅炉氮氧化物有组织排放浓度最大为 19mg/m³,因此本项目锅炉氮氧化物排放浓度取 20.0mg/m³;则氮氧化物排放量为 0.632t/a。

因此可知,本项目蒸汽锅炉采用天然气做燃料,并采取低氮燃烧技术后,废气排放浓度可满足《锅炉大气污染物排放标准》(DB14/1929-2019)中表 3 的燃气蒸汽锅炉大气污染物排放浓度限值要求,可以实现达标排放,不会对周边环境及区域大气环境造成影响。

	700.2 10		371 H 2002 1137 /			21 - 17 - 1 - 2 + 11	., +,+ -	- P-	
污染源	污染 物名	产生量	产生浓度	处理措 施及效	排放量 /(t/a)	排放速 率/	排放浓 度	排放标准	排放方式
<i>1/3</i> 5	称	/(t/a)	$/(mg/m^3)$	率	/(va)	(kg/h)	$/(mg/m^3)$	小小1庄	
10t/h	烟尘	0.158	5.0		0.158	0.038	5.0	5	连 · 续,
锅炉	SO ₂	0.095	3.0		0.095	0.023	3.0	35) 有组
	NO _X	0.632	20.0		0.632	0.15	20.0	50	织

表 3.2-18 新增 10t/h 锅炉废气污染源强核算结果及相关参数一览表

(5) 酿造车间有机废气 G5

酿造车间在蒸煮、摊晾、发酵等过程中会产生有机废气(主要为乙醇), 均为无组织排放。工艺逸散的有机废气主要分布于酿酒车间的发酵室、蒸酒过程。根据行业经验数据,乙醇挥发量按基酒年产量折合为乙醇后的 1‰进行计算。本项目新增年产65度基酒 9000t,酒精密度为 0.789g/m³,折合乙醇约 5351t/a,则发酵过程中乙醇挥发量为 5.35t/a,挥发速率为 0.61kg/h。在生产过程应保持车间通风,以保持良好的车间工作环境,采取以上措施可以有效稀释车间废气的浓度,对周围环境的影响较小。

(6) 酒糟库恶臭 G6

酒厂酿造车间若不及时清理,酒糟渣长期堆积会发生腐坏,产生恶臭,这是食品企业不允许的。

以新代老措施:本次改建工程拟建设钢结构封闭酒糟库,并采取"三防"措施,日产日清,酒糟产生的恶臭通过喷洒生物除臭剂除臭,可避免腐坏恶臭产生,对周围大气环境影响很小。

(7) 污水处理站恶臭 **G**7

污水处理系统产生的废气主要成份为恶臭,恶臭主要在进水泵站、格栅、调节池、生物反应池及污泥处理等部分产生,恶臭影响程度与充氧、污水停流的时间长短、原污水水质及当时气象条件有关。恶臭主要成份为 NH_3 、 H_2S 、甲硫醇等。根据美国 EPA 对城市污水处理厂恶臭污染物产生情况的研究,每处理 $1gBOD_5$ 可产生 $0.0031gNH_3$ 和 $0.00012gH_2S$ 。按改扩建完成后全厂产生的污水量计算,污水处理站处理 BOD_5 量约为 302.21t/a,可产 $0.94tNH_3$ 和 $0.036tH_2S$ 。

以新代老措施:本次改扩建将厌氧池、缺氧池、好氧池、沉淀池等各池体 采用轻质有机玻璃钢盖或加罩方式进行全封闭,主要恶臭产生源(格栅间、调 节池、AO 池和污泥处理间)构筑物预留臭气收集口,并安装集气管,通过离心风机将废气收集,一起进入生物滤池除臭系统,风机风量为 5000m³/h,收集效率不低于 95%,去除效率可达到 95%,处理后 NH₃和 H₂S 有组织排放量分别为 0.045t/a、0.0017t/a,经 15m 高排气筒排放; NH₃和 H₂S 无组织产生量为 0.047t/a、0.0018t/a,在污水处理站周边设置加强绿化,喷洒生物除臭剂后,无组织排放量为 0.0094t/a、0.00036t/a。

采取上述措施后,污水处理站运行排放的 NH₃和 H₂S 排放量可满足《恶臭污染物排放标准》(GB14554-93)中表 2 恶臭污染物排放标准值限值要求。污水处理站恶臭产排情况如下表所示。

					13/1/2012-11/10/20			
污染 源	污染		产生情况	采取措施		排放情况		
	物	速率 浓度		产生量	废气经收集后进入	速率	浓度	排放量
デル	170	kg/h	mg/m ³	t/a	生物滤池除臭系	kg/h	mg/m ³	t/a
污水 处理 站恶 臭	NH ₃	0.131	26.2	0.94	统, 去除效率 95%, 处理后经 15m 排气	0.0063	1.31	0.045
	H ₂ S	0.005	1.0	0.036	筒排放;周围加强 绿化,喷洒生物除 臭剂	0.00024	0.05	0.0017

表 3.2-19 污水处理站恶臭产排情况

(8) 食堂油烟

本项目设置有一个食堂,平均每天用餐人数按 50 人计算,餐厅设置 2 个灶头。根据类比调查,食用油用量按 30g/人·d 计,则本项目职工餐厅食用油消耗量为 0.45t/a。产生的油烟约占总油耗的 3%,油烟产生量为 0.015t/a,每日烹饪时间按 3 小时计,餐厅油烟收集后经油烟净化器(风量 2000m³/h,净化效率 80%)处理,处理后排放量为 0.003t/a,排放浓度 1.67mg/m³。油烟经净化处理后通过专用烟道引至屋顶进行排放,排放浓度能够满足《饮食业油烟排放标准(试行)》(GB18483-2001)中标准限值 2mg/m³。

(9) 车辆运输扬尘

车辆行驶产生的扬尘,在道路完全干燥的情况下,可按下列经验公式计算: $Qp=0.123(V/5)(M/6.8)^{0.85}(P/0.5)^{0.72}$

 $Qp'=Qp\times L\times Q/M$

公式中: Qp: 交通运输起尘量, kg/km·辆;

Qp': 运输途中起尘量, kg/a;

M: 车辆载重, t/辆; (20t/辆)

V: 汽车速度, km/h: (20 km/h)

L: 运输距离, km; (本次厂内运输距离按 200m 计算)

Q:运输量,t/a; (按原料及成品量进行计算,约为64780t/a)

P: 道路表面粉尘量, kg/m²(取 0.1)

根据以上公式, 计算得出车辆运输起尘量为 0.25t/a。

- 1)要求项目建设单位对厂区内地面进行硬化并进行清扫、洒水,以减少道路扬尘。
 - 2)运输车辆加盖篷布,并严禁超载。
 - 3) 在沿村道路上要限速行驶,以降低二次扬尘对村庄造成的影响。
- 4)厂内非道路移动机械达到国三及以上排放标准或使用新能源机械比例不低于 50%。

采取措施后,运输产生的扬尘可减少90%,运输起尘量约为0.025t/a。

道路运输环保要求:

公路运输使用达到国六及以上排放标准的重型载货车辆(含燃气)或新能源汽车比例不低于 50%。厂区运输车辆达到国六及以上排放标准(含燃气)或使用新能源汽车比例不低于 50%。

厂内非道路移动机械主要为叉车,根据《非道路移动机械污染防治技术政策》,使用的叉车到达国家第三阶段排放控制水平,使用的叉车优先采用《非道路移动机械污染防治技术政策》表 1 装用压燃式发动机的非道路移动机械排放控制技术。厂内非道路移动机械达到国三以上排放标准或使用新能源机械。

(10) 本次改建工程废气产生、治理及排放情况

表 3.2-20 本次改建工程废气产生、治理及排放情况

				产生浓	本 (且织	T /U /U LIL	执行标准
污染源	污染物	废气量	产生量	度	治理措施	排放量	浓度	无组织排	独座(/ 3)
		(m ³ /h)	(t/a)	(mg/m^3)		(t/a)	(mg/m^3)	放量(t/a)	浓度(mg/m³)
卸粮粉尘 G1、清理筛 分粉尘 G2	颗粒物	14000	8.085	1500	卸粮工序设2个侧吸罩收集后与清理 筛分过程负压收集的粉尘进入1套布 袋除尘器进行处理后,经1根15m排 气筒排放,排气筒内径0.5m	0.054	10.0	0.039	有组织: 120; 无组织: 1.0
粉碎粉尘 G3	颗粒物	16000	17.87	1500	2 台粉碎机经负压收集后进入 2 套布 袋除尘器进行处理后,经 1 根 22m 排 气筒排放,排气筒内径 0.5m	0.224	10.0	0	有组织: 120; 无组织: 1.0
燃气锅炉废	烟尘		0.158	5	 燃用天然气,采用低氮燃烧技术,废	0.158	5	0	5
然(树炉及 气 G4	SO_2	7500	0.095	3	一	0.095	3	0	35
(, 04	NO_X		0.632	20.0	红 2 似 8 时 同 计 (同 计)从	0.632	20.0	0	50
酿造车间有 机废气 G5	有机废气	/	/	/	保持车间通风	/	/	5.35	2.0
酒糟库恶臭 G6	恶臭	/	/	/	新建封闭酒糟库,采用生物除臭剂除 臭	/	/	/	20(无量纲)
	NH ₃	5000	0.94	26.2	废气收集后进入生物滤池除臭系统	0.045	1.31	0.0094	无组织 1.5
污水处理站	H ₂ S	5000	0.036	1.0	进行处理,去除效率 95%,处理后经	0.0017	0.05	0.00036	无组织 0.06
G7	臭气浓度	/	/	/	15m 排气筒排放,排气筒内径 0.4m; 周围加强绿化,喷洒生物除臭剂	/	/	/	20(无量纲)
食堂油烟 G8	油烟	2000	0.015	8.33	油烟净化装置处理后经管道排放	0.003	1.67	2	2
车辆运输扬 尘 G9	颗粒物	/	0.25	/	厂区内地面进行硬化并进行清扫、洒 水,以减少道路扬尘	/	/	0.025	1.0

2、废水

本次改建工程废水包括生活污水、生产废水和初期雨水。生产废水主要包括酿酒车间发酵过程产生的黄浆水、蒸酒产生的锅底水和设备清洗废水等。可以分为高浓度废水和低浓度废水,废水中各污染物浓度参照《酿造工业废水治理工程技术规范》(HJ575-2010)。

(1) 生活污水产生量

本次改建新增员工 100 人,产污系数取 80%,则新增排水量 4 m³/d。

(2) 生产废水产生量

①高浓度有机废水

本次改建工程高浓度有机废水主要由酿造车间产生,包括蒸煮和蒸馏过程产生的锅底水、发酵过程产生的黄浆水。

a.锅底水 W1

锅底水由蒸煮和蒸馏工序产生,在蒸煮和蒸馏过程中,有一部分配料从甑篦漏入底锅,导致底锅废水中含大量有机污染物。锅底水属于氮营养缺乏的高浓度有机废水,含有乙醇、戊醇、丙醇、丁醇等醇类物质,脂肪酸、氨基酸、糖类、纤维素等成分,为间歇排放。根据业主提供资料及类比分析,本项目生产工艺底锅水产生量约为 2.5t/t 原酒,为间歇排放,经车间污水管道收集排入厂区污水处理站进行处理。该部分废水属于高浓度废水,废水产生量为 75m³/d。

b.黄浆水 W2

黄浆水,又称窖底水,是窖内酒醅向下层渗漏的黄色淋浆水,含有 1~2%的残余淀粉,0.3~0.7%的残糖,4~5%(V/V)的酒精,大量含氮化合物、醛、酸及经过长期发酵驯化的有益微生物菌群,属于高浓度有机废水。根据业主提供资料及类比分析,本项目生产工艺黄浆水产生量约为 0.4t/t 原酒,为间歇排放。经车间污水管道收集后进入厂区污水处理站进行处理。该部分废水产生量为12m³/d,根据《酿造工业废水治理工程技术规范》(HJ575-2010)。

②低浓度有机废水

c.地面及设备冲洗废水 W3

为了保持车间卫生要求,需对部分车间和设备进行冲洗,本次改建新增地

面冲洗及设备冲洗废水产生量约为 4.4m³/d, 其中污染物浓度不是很高, 夹杂一定的有机污染物, 为间歇排放, 经车间污水管道收集排入厂区污水处理站进行处理。

d.检验废水 W4

本次改建工程新增检验废水产生量为 0.8m³/d,属低浓度有机废水,为间歇排放,排入污水站进行处理。

e.锅炉排污及含盐废水 W5

本次改建工程共排放废水量为 35.56m³/d, 该部分废水中污染物主要为 SS 和盐类, 有机物浓度很低, 排入厂区污水处理站进行处理。为间歇排放。

f.洗瓶废水 W6

本次改建工程新增洗瓶废水产生量为 2.0m³/d, 主要污染物为 SS。

g.纯水系统排水 W7

本项目利用反渗透只能透过溶剂而不能透过溶质的功能,去除原水中的无机离子、细菌、病毒、有机物及胶体等杂质,该设备纯净水制备率为70%,本项目纯水需要量为1500m³/a,5.0m³/d,则新鲜水用量为2142.86m³/a,7.14m³/d,产生浓水量为642.86m³/a,2.14m³/d,主要污染物为SS和盐分。

(3) 废水收集和处理

生活废水和生产废水通过管网直接进入厂区污水处理站,本次改建工程新增废水产生量为135.9m³/d,废水中各污染物浓度参照《酿造工业废水治理工程技术规范》(HJ575-2010),改扩建完成后全厂废水221.68m³/d,水量水质情况统计见下表。

表 3.2-21 全厂生产废水中各污染物的产生浓度及产生量										
污染源	废水产生量		污染物	产生浓度	产生量					
	m ³ /d	m³/a	7371013	(mg/L)	(t/d)	(t/a)				
	145	43500	COD	16000	2.32	696.0				
			BOD ₅	7000	1.015	304.5				
高浓度有			SS	500	0.073	21.75				
机废水			NH ₃ -N	100	0.015	4.35				
			TP	125	0.018	5.438				
			TN	150	0.022	6.525				
中、低浓	76.68	23004	COD	500	0.038	11.502				

表 3 2-21 全厂生产废水中各污染物的产生浓度及产生量

度废水		BOD ₅	200	0.015	4.601
		SS	450	0.035	10.352
		NH ₃ -N	35	0.003	0.805
		TP	10	0.0008	0.23
		TN	40	0.003	0.920

项目改扩建完成后,生产废水、生活废水产生最大量为221.68m³/d。

现有环保措施: 厂区内现有污水处理站设计规模为 250m³/d, 处理规模可满足改扩建后废水产生总量; 处理工艺采用"格栅间+调节池+气浮池+IC 厌氧反应器+AO/AO/AO+MBR 膜+混凝沉淀+过滤+消毒", 经处理后废水满足《污水排入城镇下水道水质标准》(GB/T 31962-2015)A 级标准限值。

根据《山西昌源酒业有限公司年度排污许可执行报告》(2022)中废水排 放浓度数据,本次改扩建完成后,厂区废水经污水处理站处理后的排放浓度及 排放量见下表。

废水量 $65637 \text{m}^3/\text{a}$ 水质指标 рН COD BOD₅ SS NH₃-N TP TN 处理后浓度 7 6-9 105 105 30 3.0 62.8 (mg/L)排放量(t/a) / 6.892 6.892 0.459 1.969 0.197 4.122 排放标准 6-9 500 350 400 45 8.0 70 (mg/L)达标情况 达标 达标 达标 达标 达标 达标 达标

表 3.2-22 本次改扩建完成后厂区废水总排口排放情况

本次改建完成后全厂废水经厂区污水处理站预处理后经污水管网排入祁县湾宇市政污水处理有限公司,处理后的排放浓度及排放量见下表。

表 3.2-23 污水处理公司废水排放情况

废水量		65637m ³ /a								
水质指标	pН	COD	BOD ₅	SS	NH ₃ -N	TP				
处理后浓度 (mg/L)	6-9	40	10	10	2.0	0.4				
排放量(t/a)	/	2.625	0.656	0.656	0.131	0.026				
排放标准 (mg/L)	6-9	40	10	10	2.0	0.4				
达标情况	达标	达标	达标	达标	达标	达标				

本项目的全部废水预处理后均能进入祁县鸿宇市政污水处理有限公司进行 处理,经处理后达标排放,因此本项目的废水不会直接排入水环境中,对地表 水环境影响较小。**因此现有措施可行。**

(4) 初期雨水收集和处理

经计算本项目初期雨水量为 443.99m3, 现通过雨水管网排入昌源河。

以新代老措施:环评要求建设 500m³ 初期雨水收集池收集初期雨水,收集后的初期雨水用于厂区绿化和厂区洒水降尘。

3、噪声

本项目运营期噪声源主要来自清理、粉碎、酿酒、锅炉房、灌装和污水处理等工序的生产设备,声压级范围为 80~85dB(A)。为减少设备噪声对厂界的影响,建设单位在设备选型中尽量选择低噪声设备,从根本上减少噪声源,对于产生噪声较大的设备如风机、泵类及各种设备等,在满足工艺要求的基础上,能置于室内的要置于室内,并采取基础减振措施,以减轻对周围环境及操作人员的影响。治理后要求各噪声源低于 65dB(A)。本项目噪声源强及防治情况详见下表。

4、固体废物

本项目产生的固体废物包括一般工业固体废物、生活垃圾及危险废物。

(1) 一般固体废物

①一体化筒仓产生的杂质粉尘 S1

本项目使用高粱为去壳后高粱,一体化筒仓在除杂及粉碎过程杂质的产生量按原料的 0.1%计算,则本次改建工程新增粉尘杂质产生量为 19t/a,作为家畜饲料直接出售。

②酒糟 S2

酒糟是本项目产生的最大的副产物,酒糟中含有稻壳、麦糠及发酵后产生的有机物等。根据建设单位实际运行经验,每产生一吨原酒约 2.7t 酒糟,则本次改建工程新增酒糟 24300t/a。

以新代老措施:本次改建工程新建封闭钢结构酒糟库,采取"三防措施", 丢糟暂存于厂区酒糟库内,外售给附近养殖场作饲料(酒糟处置协议见附件), 日产日清,渗滤液通过收集槽收集后送至厂区污水处理站处理。

表 3.2-24 本项目新增噪声源强调查清单(室内声源)

	衣 3.2-24												
序	建筑	声源名		声功	声源控制	相对	寸空间位置/m		距室内	运行时	建筑物插入	建筑	筑物外噪声
_万 号	物名	产 <i>你</i> 石 称	型号	率级	产源控制 措施	X	N/	Z	边界距	段	损失/dB	声压	建筑物外
	称	141		十级	1月 11년	Λ	у	L	离/m	· · · ·	(A)	级	距离 m
1		升降机	/	80	减振、隔 声	471380.98	3946950.31	2.5	3	昼夜	10	65	1.0
2		风冷式 冷却器	7.5kw*2	85	减振、隔 声	471380.52	3946956.86	2.5	5	昼夜	10	70	1.0
3		搅料机	/	85	减振、隔 声	471382.91	3946944.95	2.5	5	昼夜	10	70	1.0
4	4#大	双梁起 重机	16t	85	减振、隔 声	471384.37	3946948.51	2.5	8	昼夜	10	70	1.0
5	间	抓斗	/	80	减振、隔 声	471389.24	3946952.37	2.0	5	昼夜	10	65	1.0
6		扬渣机	/	80	减振、隔 声	471401.63	3946955.90	3.0	6	昼夜	10	70	1.0
7		喂料机	/	80	减振、隔 声	471414.48	3946949.90	2.0	5	昼夜	10	70	1.0
8		鼓风机	/	85	减振、隔 声	471460.48	3946986.65	2.0	5	昼夜	10	80	1.0
9		升降机	/	80	减振、隔 声	471458.25	3946947.31	2.5	5	昼夜	10	65	1.0
10	6#大 曲车	风冷式 冷却器	7.5kw*2	85	减振、隔 声	471456.32	3946958.25	2.5	8	昼夜	10	70	1.0
11	间	搅料机	/	85	减振、隔 声	471421.59	3946958.02	2.5	6	昼夜	10	70	1.0
12		双梁起 重机	16t	85	减振、隔 声	471369.31	3946912.36	2.5	3	昼夜	10	70	1.0

13		抓斗	/	80	减振、隔 声	471378.25	394692.368	2.0	6	昼夜	10	65	1.0
14		扬渣机	/	80	减振、隔 声	471463.25	3946911.28	3.0	5	昼夜	10	70	1.0
15		喂料机	/	80	减振、隔 声	471415.69 8	3946956.98	2.0	5	昼夜	10	70	1.0
16		鼓风机	/	85	減振、隔 声	471497.32	3946861.03	2.0	5	昼夜	10	80	1.0
17		过滤机	BJGY(B)-10	80	减振、隔 声	471445.21	3946979.82	2.0	5	昼夜	10	70	1.0
18		纯水制 备	5T/h	80	减振、隔 声	471370.06	3946952.13	7.5	2	昼夜	10	85	1.0
19	灌装 车间	灌装设 备	P=22kW	80	减振、隔 声	471435.36	3946949.24	0.5	1	昼夜	10	75	1.0
20		水泵	/	80	减振、隔 声	471437.07	3946954.29	1.5	2	昼夜	10	85	1.0
21		风机	/	85	减振、隔 声	471453.86	3946964.95	0.5	1	昼夜	10	95	1.0

③污水处理站污泥 S3

根据《集中式污染治理设施产排污系数手册》(2010年):污泥产生量一般由物理污泥、生化污泥和化学污泥三部分组成;其中,工业废水集中处理设施核算污泥产生量可按下式计算:

$$S = K_4Q + K_3C$$

式中: S——污水处理厂含水率 80%的污泥产生量, t/a:

K4—物理与生化污泥综合产生系数, t/万 t 废水处理量, 系数取值 见《集中式污染治理设施产排污系数手册》(2010年)中的第一册表 4, 本项目取"食品工业 6.7t/万 t·废水处理量;

O——污水处理量, 万 t/a; 污水处理量为 6.564 万 t/a;

K3——化学污泥产生系数,t/t·絮凝剂使用量,系数取值见《集中式污染治理设施产排污系数手册》(2010年)中的第一册表 3,即 4.53t/t·絮凝剂使用量;

C——无机絮凝剂使用总量,t/a;本项目采用无机絮凝剂和有机絮凝剂结合使用,其中无机絮凝剂用量约为0.5t/a。

由上式计算可得:本项目污泥产量(含水率80%的污泥)=6.7×6.564+4.53×0.5=46.24t/a。脱水后,定期清运至环卫部门指定地点倾倒,由环卫部门统一处置。

④废离子交换树脂 S4

锅炉房软水制备采用树脂交换法,离子交换树脂需定期更换,产生少量的废离子交换膜,本次改建工程新增产生量约0.2t/a,属于一般工业固废,由厂家定期进行回收并更换。

⑤废过滤材料 S5

污水处理站废水深度处理系统过滤设备及原酒过滤设备,使用的过滤材料 石英砂和活性炭需进行定期更换,本次改建工程产生量约为 0.3t/a,属于一般工 业固废,由厂家定期进行回收并更换。

(2) 危险废物 S6

本次改建工程新增修配车间产生的废矿物油约 0.5t/a, 属于危险废物, 废物

类别为 HW08 其他废物, 废物代码为 900-214-08;

本次改建工程化验室在白酒检测过程无机废液处理产生的残渣、残液及实验用品,属于危险废物,产生量约为 0.03t/a, 废物类别为 HW49 其他废物, 废物代码为 900-047-49;

以新代老措施:本次改建工程拟在厂区内建设 10m² 危废暂存间,地面采取 防渗措施,对产生的不同危险废物进行分类存放,并定期送有资质单位进行处置。

(3) 生活垃圾 S7

本项目新增员工 100 人,生活垃圾产生量按 0.5kg/人·d 计,则本项目新增员工生活垃圾产生量为 50kg/d, 15t/a。

次 3.2-23 本价以建工程回冲及初基平用优化总衣									
序 号	废物名称	产生量 /(t/a)	产生工序及装置	措施	固废类 型				
1	杂质粉尘 S1	19	卸粮及除杂、粉碎	作为家畜饲料直接出售					
2	酒糟 S2	24300	酿造工序	日产日清,外售给附近养殖 场作饲料,禁止在酿造车间 内堆积					
3	污水处理站污 泥 S3	46.24	生化处理工序	指定地点倾倒,由环卫部门 统一处置	一般工业固废				
4	废离子交换树 脂 S4	0.2	锅炉软水制备	由厂家定期进行回收并更换					
5	废过滤材料 S5	0.3	过滤设备	由厂家定期进行回收并更换					
6	生活垃圾 S7	15	生活办公	由环卫部门统一处置					
7	废矿物油 S6	0.5	修配车间	· 暂存在危废暂存间,定期由					
8	化验室废液、废 包装 S6	0.03	化验室	有资质单位收集处置	危废				

表 3.2-25 本次改建工程固体废物基本情况汇总表

表 3.2-26 改扩建完成后全厂固体废物基本情况汇总表

74								
序	 废物名称	产生量	产生工序及装置	 	固废类			
号		/(t/a)			型			
1	杂质粉尘 S1	33.5	卸粮及除杂、粉碎	作为家畜饲料直接出售				
				日产日清,外售给附近养殖				
2	酒糟 S2	40500	酿造工序	场作饲料,禁止在酿造车间	一般工			
				内堆积				
2	污水处理站污	46.24	生化处理工序	指定地点倾倒,由环卫部门				
3	泥 S3	40.24	工化处理工厅	统一处置				
4	废离子交换树	0.3	锅炉软水制备	由厂家定期进行回收并更换				

序	废物名称	产生量	产生工序及装置	措施	固废类
号		/(t/a)			型
	脂 S4				
5	废过滤材料 S5	0.3	过滤设备	由厂家定期进行回收并更换	
6	生活垃圾 S7	45	生活办公	由环卫部门统一处置	
7	废矿物油 S6	0.7	修配车间	· 暂存在危废暂存间,定期由	
8	化验室废液、废 包装 S6	0.05	化验室	有资质单位收集处置	危废

5、地下水防治措施

本项目根据坚持"源头控制、分区防治、污染监控、应急响应"的原则,采取的地下水防治措施如下所述。

(1) 源头控制措施

- ①积极推行实施清洁生产,实现各类废物合理处置,减少污染物的排放量:
- ②根据国家现行相关规范加强环境管理,定期进行巡检并及时处理污染物 即、冒、滴、漏,若发现防渗密封材料老化或损坏,及时维修更换:
- ③对管道、设备、污水储存及处理等构筑物采取控制措施,防止污染物的 跑、冒、滴、漏,将污染物泄漏的环境风险事故降到最低限度。

(2) 分区防治措施

将本项各功能单元所处的位置划分为重点防渗区、一般防渗区、简单防渗区三类地下水污染防治区域。

重点防渗区:污水处理站内池体、污水管道、应急事故池、初期雨水收集池、危废暂存间。

一般防渗区:酒糟库、生产车间、酒糟库及仓库等。

简单防区: 办公生活区及厂区道路。

现有防渗措施:本项目污水处理设施的池体均采取重点防渗措施,废水收集池地面及四周进行混凝土硬化,池体采用防渗钢筋混凝土,池内表面涂刷水泥基渗透结晶型防渗涂料,渗透系数<1.0×10⁻¹¹cm/s;酿造车间所有区域、酒库、灌装车间等生产车间均采取防渗混凝土进行防渗,用粘土作为天然料,防渗层Mb≥1.5m,再在其上铺设混凝土 2mm,渗透系数≤10⁻⁷cm/s;简单防渗区(办公区及道路)均采取地面硬化。

以新代老措施:本次改建工程新建危废暂存间、事故水池和初期雨水收集池,事故水池和初期雨水收集池地面及四周进行混凝土硬化,池体采用防渗钢筋混凝土,池内表面涂刷水泥基渗透结晶型防渗涂料,渗透系数<1.0×10⁻¹¹cm/s;危废暂存间采用混凝土防渗的基础上加铺 2mmHDPE 膜强化防渗(渗透系数<1.0×10⁻¹⁰cm/s),满足等效黏土防层 Mb≥6.0m、渗透系数 K≤1.0×10⁻⁷cm/s 的要求;酒糟暂存库、酿造生产车间采取一般防渗,在黏土防渗层的基础上设置混凝土地面,渗透系数小于 1×10⁻⁷cm/s。

综上,在采取上述防滲处理措施后,项目不会对区域地下水造成明显影响。 6、环境风险

(1) 风险调查

项目涉及的主要危险物质为原酒: (酒精度数约 65°),主要成分为乙醇。 危险化学品废矿物油。根据《建设项目环境风险评价技术导则》(HJ 169-2018)中附录 B表 B.1的规定,乙醇未被列为危险物质。根据《危险化学品重大危险源辨识》(GB18218-2018),乙醇属于易燃液体,临界量为500吨。废矿物油,临界量为2500t。

(2) 风险识别

a.物质危险性识别

白酒中乙醇是易燃物质,常温下易挥发,生产过程中如发生跑冒滴漏,进入空气等原因造成其蒸汽与空气形成爆炸性混合物,存在遇明火、高热、静电而引起火灾、爆炸的可能性。

废矿物油发生泄漏引发的火灾、燃烧过程中不完全燃烧伴随产生 CO 释放至大气,事故情况下 CO 泄入周围大气中,在大气中扩散对环境和生态环境造成危害。

b.生产系统危险性识别

生产车间:原酒酿造车间可能存在风险的设施包括蒸馏甑、接酒桶、酒泵、储酒罐等,含乙醇的白酒设备若遇高热,内压增大,有开裂和爆炸的危险,如果设备或输送管道、法兰及阀门密封不良或失效,有可能导致易燃物质大量泄漏,也存在火灾、爆炸的隐患。

原酒贮存:生产工艺中产出的和经管道及输送泵储存于储罐内。该输送及储存过程中物料为原酒(乙醇溶液),主要涉及的设施、设备有管道、输送泵、储罐以及阀门、法兰、安全阀、压力表、法兰辅件等。该过程中主要存在的危险是原酒泄漏,以及泄漏引发火灾、爆炸事故后伴生 CO 等危险物质的风险。

危废暂存间:废矿物油在储存过程发生泄漏引发火灾及爆炸事故。

c.扩散途径

根据对项目风险事故的识别和分析,可知本项目存在的环境风险类型主要为废水泄漏、火灾等引发的伴生/次生污染物排放。废水、原酒等泄漏渗透进入土壤和地下水;原酒发生火灾爆炸事故引发的次生/伴生污染物 CO 的排放,扩散途径为大气环境。

(3) 风险防范措施

1) 大气环境风险防范措施

本项目各建构筑物之间及交通干道等间距满足安全防护距离和防火间距要求,建构筑物耐火等级符合《建筑设计防火规范》要求;厂区总平面布置符合防范事故要求,有应急救援设施及救援通道、应急疏散。在运营期间各生产车间应定期检查维修,并在车间内设置紧急救护用品用具和医疗设施;一旦发生事故,立即采取措施,尽量切断泄露源,从源头上控制。

2) 事故废水环境风险防范措施

为防止原酒泄漏,厂区内酒库建筑为"半地下式",库内半地下式"相当于围堰,一旦泄漏可以起到截留作用,防止原酒泄漏后直接排放。

本项目发生风险事故时,特别是发生火灾爆炸事故时,在进行消防灭火的过程中会产生大量的消防废水,消防废水若直接排放至外环境将会产生严重的水体污染事件;同时为防止厂区污水处理设施发生事故,废水直接排放至周边水体,根据《酿造工业废水治理工程技术规范》(HJ575-2010)中"事故池有效容积应大于发生事故时的最大废水产生量,或大于酿造工厂 24h 的综合废水排放总量,事故状态消防废水按 150m³ 计,厂区内 24h 的综合废水排放总量 242.57m³,本次改建厂区内建设 250m³ 事故水池和 500m³ 初期雨水收集池,可容纳 24h 厂区综合废水产生量。企业应及时检修设备,排除故障后即将废水处

理达标排放。若故障暂时无法排除,应立即停产大修,严禁废水超标排放。

3) 地下水环境风险防范措施

依照地下水污染防治措施进行分区,同时建设单位在运营期按本环评报告 的监测计划开展监测,能够有效发现非正常状况下的地下水污染影响。

3.2.5.3 项目非正常工况污染物排放分析

(1) 废气

a.装置开、停车

本项目为白酒酿造行业,间断生产制度,不存在开停车时工况不稳定的情况。

b.环保设施检修及运转异常

本项目卸粮及原料粉碎工序布袋除尘器在检修或发生布袋破损时会发生粉尘泄露。由于卸粮、清理筛分及粉碎设备均为间断运行,正常情况下,布袋可在停产情况下检修时按使用周期成批或布袋破损情况更换。若布袋除尘器发生泄露时,除尘率按为60%计。

		10 3.2 21	71-44-11	1 JLW > XV		
序号	排放源	非正常排	污染物	非正常排放速	单次持续时	年发生频
万与	1升F/JX // /示	放原因	行架初	率/(kg/h)	间/h	次/次
1	卸粮、清理筛分 过程	布袋除尘 器发生泄	粉尘	7.39	0.5h	2
2	粉碎过程	漏		19.19	0.5h	2

表 3.2-27 非正常排放参数表

(2) 废水

木项目非正常工况主要指污水处理站运行异常。项目主要污染物为废水, 非正常工况主要指厂区污水处理站发生故障的情形。项目污水站非正常运行, 主要是指厌氧池等各池子的运行不正常,不能高效处理废水,进而影响出水水 质。控制非正常工况废水污染物排放的主要措施有:

污水处理站新建一座有效容积为 250m³ 事故池,一旦污水处理设施发生故障,可把未处理好的污水排入调节池内暂存,剩余排入事故水池内,不得外排。事故池 250m³,可容纳 24h 厂区生产及生活废水。企业应及时检修设备,排除故障后即将废水处理达标排放。若故障暂时无法排除,应立即停产大修,严禁废水超标排放。

3.2.6 全厂主要污染源汇总

本次改建完成后全厂污染物产生及排放情况见下表。

表 3.2-28 全厂污染物产生排放情况汇总表

#1 M/2	v- st. vr	> > st. al.L.	产生	三情况	777 / TI LIL VIA	有组织持	非放情况	无组织排 放情况
种类	污染源	污染物	产生量	产生浓度	环保措施 -	排放量	排放浓度	排放量
			t/a	mg/m ³		t/a	mg/m ³	t/a
	卸粮粉尘 G1、 振动筛分粉尘 G2	颗粒物	16.12	1500	卸粮工序设 2 个侧吸罩收集后与清理筛分过程负压收集的粉尘进入 1 套布袋除尘器处理后经 1 根 15m 排气筒排放,排气筒内径 0.5m	0.107	10	0.075
	粉碎粉尘 G3	颗粒物	65.60	1500	2 台粉碎机经负压收集后进入2套布袋除尘器 进行处理,经1根22m排气筒排放,排气筒 内径0.5m	0.437	10	0
	2 公婚层积的	颗粒物	0.472	5	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	0.472	5	0
	3 台燃气锅炉 - 废气 G4 -	SO_2	0.285	3.0	采用低氮燃烧技术,3 台锅炉分别经1根8m 排气筒排放,排气筒内径0.6m	0.285	3.0	0
废气	及"(64	NOx	2.18	20	, 排(同升双,排(同内在 0.0m ——————————————————————————————————	2.18	20	0
	酿造车间有机 废气 G5	有机废气	/	/	保持车间通风	/	/	8.882
	酒糟库恶臭 G6	恶臭	/	/	喷洒生物除臭剂除臭	/	/	/
	(二) / T田	NH ₃	0.94	26.2	1 套生物滤池除臭系统进行处理,处理后经 1	0.045	1.31	0.0094
	污水处理站废 气 G7	H ₂ S	0.036	1.0	根 15m 排气筒排放,排气筒内径 0.4m; ; 周	0.0017	0.05	0.00036
	(0)	臭气浓度	/	/	围加强绿化,喷洒生物除臭剂	/	/	/
	食堂	油烟	0.045	7.5	油烟净化装置	0.011	1.875	/
	道路运输	颗粒物	0.25	/	进入油烟净化装置处理后经管道排放	/	/	0.025
応ず	本业节排 符口	COD	707.562	/	处理工艺采用"格栅间+调节池+气浮池+IC 厌	6.892	105mg/L	/
废水	废水总排放口	BOD ₅	309.101	/	氧反应器+AO/AO/AO +MBR 膜+混凝沉淀+	6.892	105mg/L	/

		SS	32.102	/	过滤+消毒",处理后通过污水管网进入祁县	0.459	7mg/L	/
		NH ₃ -N	5.155	/	鸿宇市政污水处理有限公司提供	1.969	30mg/L	/
		TP	5.578	/		0.197	3.0mg/L	/
		TN	3.445	/		4.122	62.8mg/L	/
		粉尘杂质	33.5	/	作为家畜饲料直接售出	有效	处置	/
		酒糟	40500	/	外售给附近养殖场作饲料	有效	处置	/
	一般工业固废	污泥	46.24	/	干化后由环卫部门统一处置	有效	处置	/
和本	双工业团/及	废离子交换 树脂	0.4	/	由厂家定期进行回收并更换	有效	处置	/
固废		废过滤材料	0.5	/	由厂家定期进行回收并更换	有效	处置	/
		废矿物油	0.7					/
	危废	化验室废 液、废包装	0.05	/	暂存在危废暂存间,定期送有资质单位处置	有效	处置	
	生活垃圾	生活垃圾	45	/	由环卫部门定期进行处理。	有效	处置	/
噪声	噪声	设备噪声	/		选用低噪声设备、安装减震垫,部分设备室 内安装,加强维护,合理布局	达标	排放	

3.2.7 三本账分析

表 3.2-29 "三本帐"计算

			1C 3.2 2)	/T*TK			
项目	污染源	污染物	现有工程排 放量 t/a	拟建项目 排放量 t/a	"以新带 老"削减 量 t/a	技改完成 后全厂排 放量 t/a	增减量变 化 t/a
废	卸粮、清 理筛分及 粉碎过程	颗粒物	0.24	0.278	0	0.518	0.278
气		颗粒物	0.314	0.158	0	0.472	+0.158
	锅炉废气	NO_X	1.548	0.632	0	2.18	+0.632
		SO ₂	0.19	0.095	0	0.285	+0.095
		COD_{Cr}	0.997	1.628	0	2.625	1.628
废	始人成小	氨氮	0.049	0.081	0	0.130	0.081
水	综合废水	总磷	0.01	0.016	0	0.026	0.016
		总氮	0.049	0.081	0	0.130	0.081
	办公生活	生活垃圾	30	15	0	45	15
	卸粮、清 理筛分及 粉碎过程	粉尘杂质	14.5	19	0	33.5	19
	酿造车间	酒糟	16200	24300	0	40500	24300
固 体	污水处理 站	污泥	1.5	31.52	-17.89	46.24	49.41
废物	软水制备	废离子交 换树脂	0.2	0.2	0	0.4	0.2
	污水处理 站	废过滤材 料	0.2	0.3	0	0.5	0.3
	修配车间	废矿物油	0.2	0.5	0	0.7	0.5
	化验室	废液、废 包装	0.02	0.03	0	0.05	0.03

分析"三本账"数据可知:本项目卸粮、清理筛分及粉碎过程产生的粉尘治理措施依托现有,由于规模扩大粉尘产生量相应增加;由于规模的扩大生产废水产生量增加,经厂区内污水处理站预处理后排入祁县鸿宇市政污水处理有限公司,处理后可达标排放;改建完成后增加的固体废物均能得到有效处置,对周围环境影响不大。

3.2.8 区域削减方案

根据原环保部办公厅《关于落实大气污染防治行动计划严格环境影响评价 准入的 通知》(环办[2014]30号)、《建设项目主要污染物排放总量指标核定 暂行办法要求》 (晋环规〔2023〕1号),严格建设项目环境影响评价准入, 现结合环境质量状况, 山西昌源酒业有限公司改建自动化灌装生产线与地缸大 曲车间项目区域污染物削减方案如下:

经核算, 项目建成后大气污染物排放总量为: 颗粒物 1.289t/a 、SO₂ 0. 285t/a 、NO₂ 2.18t/a、COD2.625t/a、NH₃-N0.130t/a。

祁县 2022 年环境空气质量细颗粒物、颗粒物、氮氧化物、二氧化硫、臭氧年均浓度分别为 80 μ g/m³、41 μ g/m³、38 μ g/m³、19 μ g/m³、176 μ g/m³,其中 PM_{2.5}、PM₁₀和臭氧未达到《环境空气质量标准》(GB3095-2012)二级标准。根据《山西省生态环境厅关于印发建设项目主要污染物排放总量指标核定暂行办法》(晋环规[2023]1号),二氧化硫、氮氧化物、颗粒物排放量不大于 3 吨不需要进行总量置换。

2022 年祁县 5 个断面水环境质量均达到考核要求,根据《山西省生态环境 厅关于印发建设项目主要污染物排放总量指标核定暂行办法》(晋环规[2023]1 号),NH₃-N 排放量不大于 0.5 吨不需要进行总量置换。化学需氧量排放量需按 建设项目核定污染物排放总量指标的 1 倍进行置换。

本项目配套污染物削减方案见表 3.2-30。

表 3.2-30 本项目配套污染物削减方案减排量表 单位: t/a

类别	项 目	颗粒物	SO ₂	NO _X	COD	NH ₃ -N
新增量	本项目排放量	1.289	0.285	2.18	2.625	0130
削减量		_	_	_	2.625	_

晋中市生态环境局祁县分局于 2023 年 10 月 29 日,以祁生环字[2023]22 号文对本项目出具了"山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目主要污染物置换方案"。通过祁县实施的城赵镇城赵村污水处理站 2023 年底完成验收,按照系数方法核算,预计可形成减排量化学需氧量 20.075 吨/年、NH3-N 0.5256 吨/年。上述预计形成的减排量未用于其他建设项目,用于本项目化学需氧量 2.625 吨/年,还剩余减排量化学需氧量 17.45 吨/年、NH3-N 0.5256 吨/年。

4. 环境现状调查与评价

4.1 地理位置

祁县位于山西省中部,太岳山北麓,太原盆地南部,汾河东岸。东与太谷县相邻,西与平遥县接壤,南与武乡县交界,北与清徐县毗连,东南与榆社县峰峦相依,西北与文水县隔河相望。地理坐标介于东经 112°12′5"~112°39′6",北纬 37°4′5"~37°28′6"之间。平面轮廓呈东南至西北长条状,总面积 854km2,人口约 28 万。

本项目位于山西省祁县贾令镇贾令村南约 1.2km 处。东经 112°10′38″~112°10′45″,北纬 36°22′41″~36°22′47″之间。项目北侧为耕地,南侧为县道,紧邻县道南侧即为昌源河,西侧为空地,东侧为草地和灌木地。现有工程占地面积为 73961.64m²,地理坐标为北纬 37°23′52.04″,东经 112°20′26.20″。

本项目地理位置图见图 4.2-1, 四邻关系图见 4.2-2。

4.2 自然环境简况

4.2.1 地形地貌

(1) 地形

祁县境内地形总的趋势为东南高西北低,北部部分地区东北高西南低。总体为由山区丘陵逐渐过渡到平原。东南部山区海拔标高 1150~2000m,平原区海拔标高 750m,高差悬殊。黄土丘陵地区内沟谷纵横,地形切割破碎,地面起伏不平,山前一带呈平缓状向平原区过渡。

(2) 地貌

依据地貌成因类型和形态特征, 祁县境内分为以下地貌单元:

(1) 蚀构造中低山区

地形标高为 1150~2000m,最高峰洞顶山 2023.5m,相对高差在 400~1200m。受断裂构造及剥蚀作用结果,沟谷发育、地形切割剧烈,山顶呈尖状或浑圆状,昌源河两侧的地形多向其河谷倾斜,总的地形由南向平原倾斜,构成平缓的单斜状。出露地层为三叠系中下统砂岩或砂泥岩,砂岩往往形成陡壁或陡坎。昌源河河谷在盘陀以北为"U"型,以南多呈"V"型,谷深达 300~700m。局部低洼地段堆积为残积层及黄土。

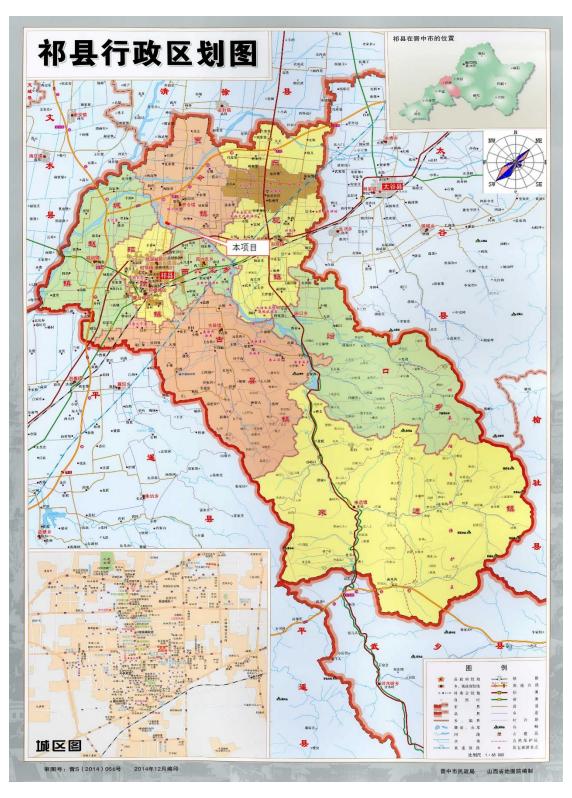


图 4.2-1 项目地理位置图

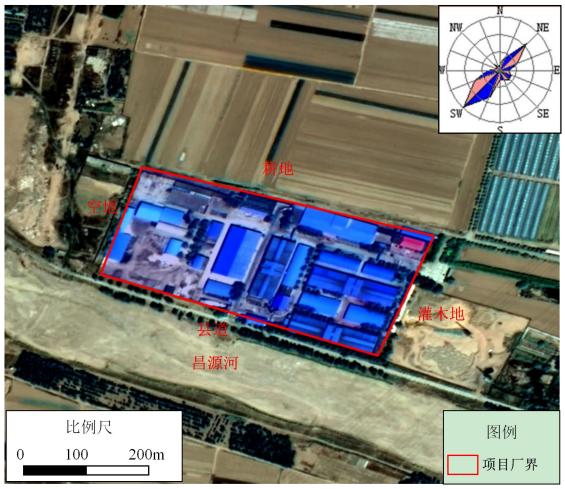


图 4.2-2 项目四邻关系图

②剥蚀堆积黄土丘陵地区

分布于峪口和任村边山一带。地形标高 800~1000m,相对高差 100~300m。台地内沟谷纵横,地形切割破碎,沟谷最深可达 50 余米,台地面向平原方向倾斜,地形坡度为 7°~15°,分布宽度 6~6.5km。黄土丘陵台地区由于暂时水流作用有埋藏的狭长形的洪积扇,如闫漫、伏溪河、下闫灿、王贤沟地段。后期在黄土丘陵台地内由于遭受现代水流的侵蚀等作用,有横卧的黄土残垣,如涧村北及牛居一带。

黄土台地前缘有 NEE 向的断裂,它构成与山前倾斜平原的天然边界,继承老的断裂,构造活动明显,在中更新世晚期,由于台地抬升而形成现代之状。

③山前倾斜平原区

分布于山前一带,呈条带状。地形标高 760~800m。总的地势由东南向西

北倾斜,地面呈波浪形,首部地形较陡,达 5°~7°,以 0.5°~3°坡降缓慢过渡到平原区,前缘界线不明显。在此区内主要分布有昌源河的洪积扇及昌源河、伏溪河的古河道。由于受河流以往的改道、水流的切割等作用,形成明显的此起彼伏的波状的古河道地形,如大韩到县城东关一带,均保留有陡坎,平台高出地面 8~10m,有明显的河流沉积物特点。

昌源河洪积扇自子洪口至贾令之间分布,面积约 130km²,总的地形自 SE 向 NW 倾斜,从首部以坡降 9°~10°向前缘呈缓舒状 (0.5°~1.5°)过渡到平原 区,前缘及两侧界线不明,后期遭水流片、面蚀作用,中上部地形略有起伏,有小冲沟存在,前缘及两侧偶有洼地分布,并有轻度盐碱化现象。地表岩性由 卵砾石逐渐过渡为粉细砂、粉质粘土,二元结构显著,有利于降水、地表水的入渗,为地下水的赋存、运移创造良好的场所。

④侵蚀堆积河谷漫滩

沿汾河、昌源河分布,地形标高 730~1000m。河谷类型,上游一带多呈"V"型,沉积物少,以卵砾石、砂为主;下游河谷宽缓平坦,宽约在 300~1000m之间,平均坡降 4~35‰,在昌源河盘陀以北及汾河一带发育不对称的 1~2 级阶地,宽约 50~200m、300~700m 不等,相对高出河床 3~7m、5~15m。由于水流侧蚀,河床迂回蛇曲。岩性主要为粉细砂夹粉土。具二元结构,上粗下细,有利于地下水的赋存。

项目地处昌源河河谷漫滩、地势平坦、适宜项目建设。

4.2.2 气候与气象

据多年气象资料,祁县气候属温带大陆性气候,四季分明,冬季少雪,春季多风,夏季雨量高度集中,秋季多晴朗天气。年平均气温 9.9℃,极端最高气温 38.9℃,极端最低气温零下 24.9℃,最热月平均气温为 23.8℃,最冷月平均气温为 6.2℃,无霜期 171.2 天,初霜日期平均为 10 月 7 日,终霜日期平均为 4 月 18 日;最多年降水量为 587.7mm,最少年降水量为 255.4mm;平均年降水量441.8mm,年蒸发量为 1586.5mm,年平均相对湿度 61%;风向受地形影响较大,春季多西南风,冬季多偏北风,全年最多风向为西南风,全年平均风速 2.1m/s,年主导风向为西南风。年均日照时数为 2667.7h,日照率为 60%。

根据气候的垂直变化规律,祁县可分为三个类型的次一级气候区。

东南山区气候区:海拔 950-2023.5m。年平均气温 7.1℃。年降水量 500mm 以上。无霜期 150d 左右。为温凉微温气候区,自然植被以针、阔叶林与灌木丛 为主。

丘陵地带气候区:位于县境中部丘陵区,海拔800-1000m。年平均气温9.4℃。 年降水量 467mm 以上。无霜期 160d 天左右。昼夜温差大。主要特征为温和干旱。

平川气候区:平川地区,海拔750-800m。年平均气温9.9℃。年降水量437.8mm。无霜期171.2d左右。主要特征为温暖半干旱。

4.2.3 水文

4.2.3.1 地表水

(1) 河流

祁县河流属黄河流域汾河水系,主要河流有汾河及其支流昌源河、伏溪河、 乌马河。

汾河:发源于宁武县管岑山,穿越太原盆地,从文水西社和祁县北马堡村之间入境,沿县域西北边界由东北向西南穿越县界,至本县西建安出境,本县境内长约15.3km,平均纵坡1.7‰,属汾河的中游河段。据介休义棠水文站实测,汾河多年平均河川径流量为8.37亿 m³。最大为16.2亿 m³,最小为1.25亿 m3。汾河构成了本县与邻县的天然界线。

昌源河: 汾河的一级支流,发源于平遥县东南部太岳山脉孟山头南麓的北邻底村,流经平遥县、武乡县,由武乡县南关村进入本县,由东南向西北纵贯全县,由祁县原西村汇入汾河,全长 87km,流域面积 1011.16km²,祁县境内744.96km²,平遥县境内182km²,武乡县境内84.2km²。昌源河主要的河沟支流有南风沟、东峪沟、左家滩沟、小庄沟、乌马河等,流域面积1029.7km²,昌源河中游设有盘陀水文站,控制流域面积533km²。据盘陀水文站实测资料,昌源河1956~2000年多年平均河川径流量为3901万 m³,系列中最大年径流量为11538万 m³ (1977年),最小年径流量为433万 m³ (1972年);最大洪峰流量为1740m³/s (1997年7月6日);年内最大流量发生于7~9月,最小流量

发生于 5~6 月。

本项目涉及地表水为昌源河,位于厂区南侧约 20m。祁县地表水系图详见图 4.2-3。

(2) 水库

子洪水库:建于昌源河出山口处,处于昌源河中游,水库坝底为砂砾石河床,左岸为砂岩与页岩,右岸为巨型顺层滑坡体,坝高 44m,总库容为 2336 万 m³,控制流域面积 576km²,属中型水库,设计灌溉面积 12 万亩。

另有建于伏溪河上的两座小型水库,分别为杜家庄水库,总库容 119 万 m³,控制流域面积 43.6km³;鲁村水库,总库容 128 万 m³,控制流域面积 52.8km³。

距离本项目最近的水库为鲁村水库,位于厂区东南侧约 14 km。

4.2.3.2 饮用水水源地

祁县城市集中式饮用水水源地共有三处:河湾水源地、西洛阳水源地和子 洪水库;乡镇集中式饮用水水源地有一处:峪口集中供水水源;项目所在地贾 令镇无集中供水水源。

河湾水源地位于祁县县城东部河湾村以南、下古县村以北的昌源河古河道上,现有开采井4眼,均位于昌源河西岸,各孔孔深180.0~213.5m,单井涌水量40~50m³/h,水位埋深20.0~35.0m。开采第四系松散岩类孔隙潜水和中深层孔隙承压水。现状开采量为1000~1500m³/d,属中小型水源地。河湾水源地一级保护区范围为以开采井为中心,R=66m的圆形区域,面积为0.056km²,周长为1658m;二级保护区范围为以1#、2#、3#、4#孔的外接多边形为边界,向外径向距离660m的多边形区域,面积为2.896km²,周长为6441m。

西洛阳水源地位于祁县县城东南部,西洛阳村以西,昌源河洪积扇顶部。水源地内现有开采井 1 眼,孔深 102.0m,单井涌水量为 50m³/h,水位埋深 28.0m,开采第四系松散岩类孔隙潜水和中深层孔隙承压水,现状开采量为 500m³/d,属中小型水源地。西洛阳水源地一级保护区范围为以开采井为中心,R57m 的圆形区域,面积为 0.01km²,周长为 358m;二级保护区范围为以 5 # 开采井为中心,R=570m 的圆形区域,面积为 1.02km²,周长为 3580m;根据水源地补给、径流、排泄条件,将昌源河地表水作为河湾水源地的准保护区范围。

子洪水库是一座以防洪和灌溉为主中型水库,控制流域面积 576km²,其中砂页岩山区 472km²,森林覆盖区 104km²。水库始建于 1971 年,1977 年进行了续建,达到现状规模。水库枢纽由大坝、输水洞和泄洪洞组成。水库大坝为均质土坝,大坝底高程为 850m,坝顶高程为 894.3m,最大坝高 44.3m,坝顶长 502.0m,坝顶宽 4.0m。输水洞位于大坝左岸,洞直径为 4m,洞长 247m,进口底高程为 856.15m,出口底高程为 852.55m,最大泄量 232m³/s,为有压输水洞。泄洪洞位于输水洞左侧,两洞轴线距 24m,洞直径为 2m,洞长 265m,进口底高程为 861.8m,出口底高程为 856.6m,最大泄量为 323m³/s,为有压隧洞。子洪水库一级保护范围:水域范围为水库取水口半径 300m 范围内的区域,陆域范围为水库取水口侧正常水位线以上 200m 范围内的陆域,但不超过流域分水岭范围,且取水口到岸边水域范围与陆域沿岸纵深范围之和不小于卫生部规定的饮用水水源卫生防护范围;二级保护区范围:水域范围为一级保护区边界外的水域,陆域范围为水库周边山脊线以内(一级保护区以外)及水库河流上溯 3000m 的汇水区域,且其边界不超过相应流域的分水岭范围;准保护区范围为二级保护区以外的汇水区域。

项目不在上述水源地保护范围内,距离项目最近的水源地为河湾水源地,本项目距离河湾水源地二级保护区边界约为 7.5km, 本项目与各集中水源地位置关系见图 4.2-3。

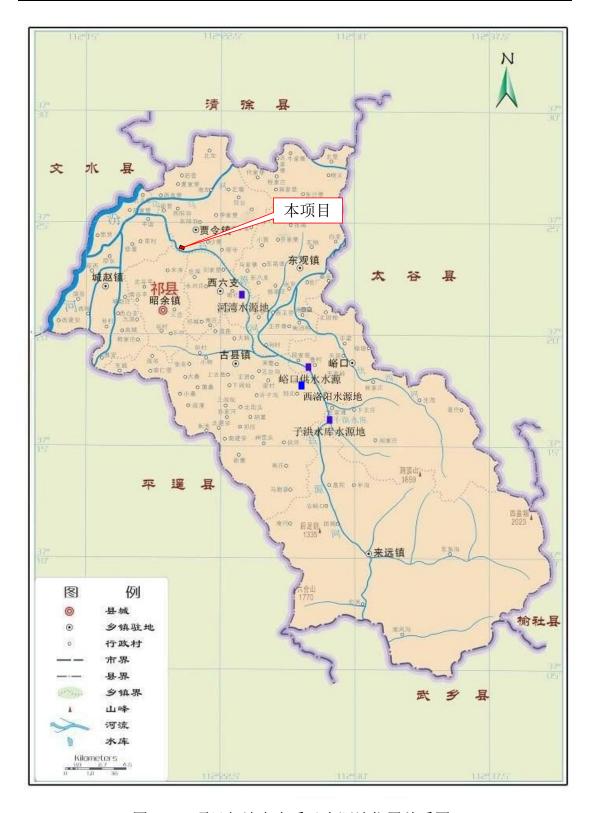


图 4.2-3 项目与地表水系及水源地位置关系图

4.2.3.3 地下水

根据地质、地貌和水文地质条件的不同,境内地下水储水构造可分为碎屑岩含水岩组和松散岩含水岩组两类。

(1) 碎屑岩含水岩组

主要分布于峪口、古县镇的南部及来远镇全部地区,含水层为裂隙砂岩。 裂隙的发育程度、性质以及沟通情况,因受构造和风化作用控制,故富水性不 均匀。泉水多出露于断裂带及沟谷内,一般的流量在每秒 0.2~0.5L。

(2) 松散岩含水岩组

按地貌单元分为黄土丘陵含水岩组、倾斜平原孔隙含水岩组和冲积平原孔隙含水岩组3个亚类。

- ①黄土丘陵孔隙含水岩组分布于峪口、古县镇境内, 富水地段处于洪积扇中, 以伏溪河洪积扇为最好。黄土丘陵孔隙含水层的埋藏深度大于 50m。
- ②倾斜平原孔隙含水岩组主要分布于由昌源河和伏溪河洪流长期沉积作用 而形成的倾斜平原上。它的前缘延到张堡、长头、贾令、城赵庄、朴村一线, 占据祁县境内整个平川面积的 2/3。含水层埋深在 100~300m。
- ③冲积平原孔隙含水岩组主要由乌马河和汾河的沉积作用而成,接近倾斜平原的部分与洪积物交错沉积,在埋深 100m 左右的地方,表现得更加明显。沉积物都比较细,有河流泛滥相沉积的特点,埋深一般小于 50m,含水层厚度在 20m 左右。县境北部的贾令镇以北及晓义乡一带,含水层的厚度在 20~25m 左右。昌源河以及汾河的岸边地带,水量丰富,但因近年来地下水的大量开采,导致承压水含水层与浅层水含水层发生水力联系,深层水补充给浅层水,降低了深层水的水头而不能自流。

(3) 水质

水质评价就全县而言,山区地下水水质优于平川,山区多属低矿化度的淡水,矿化度一般小于 0.5g/L。平川大部分地区为低-中矿化,低-高硬度的淡水,矿化度 1-2g/L。微咸及咸水,主要分布在冲积平原西部汾河地区,矿化度大于 2g/L。由山区到平川,地下水矿化度由低逐渐增高,水化学类型由简单变为复杂。水质逐步变坏,具有明显的分带规律。但总的来说,中层承压水优于浅层

潜水。除个别地点外,均适宜灌溉。夏家堡一带的浅层水水质较差,会产生轻度的盐害和碱害。山区、平川饮用水一般为好的与较好的饮用水。

本项目厂址所在区域的地下水类型为倾斜平原孔隙水。

4.2.4 土壤和动植物

(1) 土壤

祁县大的土壤类型有褐土和草甸土两类。根据其断面的垂直分布,又分为 淋溶褐土(海拔 1500~2023.5m)、草灌褐土(海拔 1000~1700m)、褐土性 土(海拔 800~1000m)、碳酸盐褐土(海拔 760~800m)和浅色草甸土、盐 化浅色草甸土(海拔 750~760m),6个亚类,分为18个土属,54个土种。

项目所在区域土壤类型为浅色草甸土。

(2) 动物

祁县境内动物种类不多,野生动物主要有兽类、鸟类、蛇虫类及鱼虾类。 其中野兽有狼、狐、野兔、豹、山猪、山羊、黄鼬、松鼠、老鼠、土拨鼠。野 禽有野鸡、石鸡、麻雀、喜鹊、红嘴鸦、水鸭、猫头鹰、啄木鸟、布谷鸟、大 杜鹃、小杜鹃、燕子、斑鸠、鸽、大雁、沙燕、鹌鹑、鹰等。爬虫类有蛇、蜥蜴、壁虎。昆虫类有蚂蚁、蜈蚣、蝎、蚯蚓、蜘蛛、蚍蜉、蝼蛄、蚜虫、毛虫、 蜻蜓、螳螂、苍蝇等。

项目所在区域主要野生动物有老鼠、麻雀、喜鹊、燕子、壁虎、蚂蚁、蜈蚣、蝎、蚯蚓、蜘蛛、蜻蜓、螳螂、苍蝇等。

(3) 植物

祁县自然条件相对优越,山高沟深,自然植被保存较好。境内植物受地形、 气候、水文、海拔高度等因素的影响,境内植被群落、种类及地理分布范围比 较复杂。

海拔 950m 以上的土石山区和石质山区,自然植被以山地灌丛和灌木草丛为主,其次为天然次生林木。山地灌丛主要分布在石质山区的化塔、南沿、下凹、遥头角、彭家岭、岭底、新房院等地带,面积 7 万多亩,灌木草丛主要生长在山地灌丛生长区的下缘,草类与灌丛混生,草种有白羊草、胡枝子、苔草等,覆盖度一般在 50~70%。天然次生林主要集中在来远镇梁坪寨、祝家庄、

瓦房间一带的阴坡半阴坡上,树种以油松、辽东栎、白桦、红桦为主,面积 5600 亩,多为小片状分布,林相残败,疏密不均。

评价区植被主要为农作物及人工栽培植物,主要为玉米和旱地、林地,评价区内未见国家保护的植物分布。

海拔 800~1000m 的丘陵地区,自然植被主要分布在农田以外的非耕地和 沟坡地带,属于典型的旱生植物群落。主要草种有白羊草、胡枝子、苔草、小 红菊、蒿草等。一般为稀疏草灌混和植物群落,在陡壁和悬崖处,常见有酸枣、 枸杞等灌丛,并有稀疏的耐旱草本植物。

平川地区的自然植被,主要生长在地边、河滩、梁堰上。主要的草类有苦菜、蒿草、苍耳、刺蓟、老来青、肥条、笤帚、拉蔓草、芦子草、沙蓬。

如从植物类型分类,主要由乔木、灌木和草本三种,乔木主要有小叶杨、 山青杨、臭椿、香椿、柳、榆、槐、桦、楸、桑、椴、松、柏等;其中传统经 济林木主要有红枣、核桃、桃、李、杏、梨、柿子、海棠、杜梨、花椒等。灌 木主要有山桃、山杏、野山渣、山梨、沙棘、酸枣、紫穗槐、紫丁香、柠条、 野玫瑰、山栀子、枸杞、野蔷薇等;草本主要为蒲公英、车前子、茵陈、甘草、 苍耳子、远志等。

项目所在区域生态环境为农业生态环境,周围植被以农田植被为主,农作物种类有玉米、谷子、高粱、马铃薯等。

4.2.5 地质概况

祁县地处山西地震带中段,地下深部断裂纵横交错,地质构造复杂。构造活动主要受太谷山前大断裂和介榆隐伏断裂带所控制。断裂走向为北北东和北东向。断裂大多属压性和压扭性。地质构造明显存在以西六支乡和城关乡西关为中心的东西向隆起构造,隆起范围约 10km²。结合地质构造和有记载的历史地震考察,地震的特点为: 频度高、强度大、震源浅。根据 1978 年省地震局颁发的《山西地震烈度区划图》资料,本地区属于 8 度区。

4.3 环境现状调查与评价

4.3.1 环境空气质量现状

4.3.1.1 所在区域达标判断

为了解评价区环境空气质量现状,本次评价收集了祁县 2021 年环境空气质量统计数据:评价区内 PM₁₀年平均质量浓度为 111μg/Nm³,超标率 59%; PM_{2.5}年平均质量浓度为 63μg/Nm³,超标率 80%; SO₂年平均质量浓度为 37μg/Nm³,未出现超标; NO₂年平均质量浓度为 28μg/Nm₃,未出现超标; CO 第 95 百分位值为 2.5mg/m³,未出现超标; O₃ 8 小时最大第 90 百分位数为 175μg/Nm³,超标率 9%。

数据显示,除 SO₂、NO₂、CO 满足《环境空气质量标准》(GB3095-2012)中二级标准要求外,其余监测因子均出现超标现象。本项目所在区域为不达标区。祁县 2021 年全年环境空气例行监测数据如下表所示。

					1	
污染 物	年评价指标	现状浓度	标准值	占标率	超标倍数	达标情况
SO_2	年平均质量浓度	37	60	62%	0	达标
NO_2	年平均质量浓度	28	40	70%	0	达标
PM ₁₀	年平均质量浓度	111	70	159%	0.59	超标
PM _{2.5}	年平均质量浓度	63	35	180%	0.80	超标
СО	百分位数日平均质量 浓度	2.5	4	62%	0	达标
O ₃	8h 平均质量浓度	175	160	109%	0.09	超标

4.3.1.2 其他污染物环境质量现状

为了解评价区的环境空气质量现状,本次评价委托山西蓝源成环境监测有限公司于 2021 年 5 月 15-21 日对《山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目》进行监测,2021 年 10 月 28 日-11 月 3 日对《山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目》非甲烷总烃进行监测。

(1) 监测布点

各监测点的布置原则如下表、监测布点图见图 4.3-1。

		1 T. J. J. P. P. L.		
编号	位置	坐标	布点原则	监测项目
1#	厂区内	112°20′21.61″ 37°23′54.27″	厂址	TSP、H ₂ S、NH ₃ 、NMHC
2#	沙堡村	112°21′45.50″	下风向 500m 范围内	TSP、H ₂ S、NH ₃ 、NMHC

表 4.3-3 环境空气质量现状监测布点及监测项目表

	37°24′12.8″	

(2) 监测时间及频次

监测时间:

2021年7月15-21日,10月28日-11月3日。

监测频次:

日均: TSP 每天采样 24h; H_2S 、 NH_3 、NMHC 每天采样为 4 次,采样时间为 02:00、08:00、14:00、20:00 时。采样期间同时记录风向、风速、气温、气压等常规气象要素。

(3) 监测方法

表 4.3-4 环境空气监测分析方法

序号	监测项目	检测方法	检测依据	检出限
1	TSP	重量法	GB/T 15432-1995	0.001mg/m^3
2	NH ₃	纳氏试剂分光光度法	НЈ 533-2009	0.01mg/m^3
3	H ₂ S 亚甲基蓝分光光度法		《空气和废气监测 分析方法》	0.001mg/m^3
4	NMHC 直接进样-气相色谱法		НЈ 604-2017	0.07mg/m^3

(4) 监测结果

表 4.3-5 其他污染物环境质量现状监测结果表

监测	监测点坐标/°				评价	监测浓	最大浓	超标	 评价	
点位	Е	N	污染物	评价时间	标准	度范围	度占标	频率	结果	
黒世	E	IN .			$/(\mu g/m^3)$	$/(\mu g/m^3)$	率/%	/%	47人	
			TSP	日均值	300	147-166	55.3	0	达标	
			H ₂ S	一次最高	10	1-5	50%	0	达标	
厂区	112°20′	37°23′5	1120	允许浓度	10	1.5	2070		,C ,,	
/ 占	21.61"	4.27"		NH ₃	一次最高	200	40-70	35%	0	 达标
1.1	21.01		1113	允许浓度	200	40-70	3370	U		
			NMHC	一次最高	2	0.12-0.22	11%	0	达标	
				允许浓度	2	0.12-0.22	1170	U		
			TSP	日均值	300	149-161	53.7	0	达标	
			II C	一次最高	10	1.4	400/	0	24-4 <u>=</u>	
沙堡	112°21′	37°24′1	H ₂ S	允许浓度	10	1-4	40%	0	达标	
少坚 村		2.8"	NIII	一次最高	200	20.60	200/	0	2 1 -1-1-2	
1°1	45.50"	2.8	NH ₃	允许浓度	200	30-60	30%	0	达标	
			ND III C	一次最高	2	0.00.0.10	00/	0	2 1 -1-1-2	
			NMHC	允许浓度	2	0.09-0.18	9%	0	达标	

由监测结果可知,厂区内、沙堡村 2 个监测点环境空气质量评价区 TSP、

 H_2S 、 NH_3 、NMHC 的最大浓度占标率分别为 55.3%、50.0%、35.0%、11%。因此,厂区内、沙堡村 2 个监测点 TSP、 H_2S 、 NH_3 、NMHC 环境空气质量全部达标。

4.3.2 地表水环境质量现状

4.3.2.1 区域地表水达标情况

根据晋中市生态环境局公布的 2023 年月晋中市地表水环境质量水质月报,祁县地表水共监测了昌源河入汾口 1 个省控断面,昌源河入汾河口断面 2023 年 1 月至 2023 年 12 月水质为 III~V 类,水质达标,2023 年 1 月和 2023 年 12 月昌源河入汾口,监测期间冰冻,不具备采样条件。

。表 3-2 昌源河省控断面昌源河入汾河口 2022 年例行监测数据统计结果

时间	断面性质	所在水体	断面名称	考核县	水质自动站数据
2023年1月	省控	昌源河	昌源河入汾口	祁县	
2023年2月	省控	昌源河	昌源河入汾口	祁县	IV 类
2023年3月	省控	昌源河	昌源河入汾口	祁县	IV 类
2023年4月	省控	昌源河	昌源河入汾口	祁县	V类
2023年5月	省控	昌源河	昌源河入汾口	祁县	IV 类
2023年6月	省控	昌源河	昌源河入汾口	祁县	III 类
2023年7月	省控	昌源河	昌源河入汾口	祁县	V类
2023年8月	省控	昌源河	昌源河入汾口	祁县	V类
2023年9月	省控	昌源河	昌源河入汾口	祁县	V类
2023年10月	省控	昌源河	昌源河入汾口	祁县	IV 类
2023年11月	省控	昌源河	昌源河入汾口	祁县	III 类
2023年12月	省控	昌源河	昌源河入汾口	祁县	

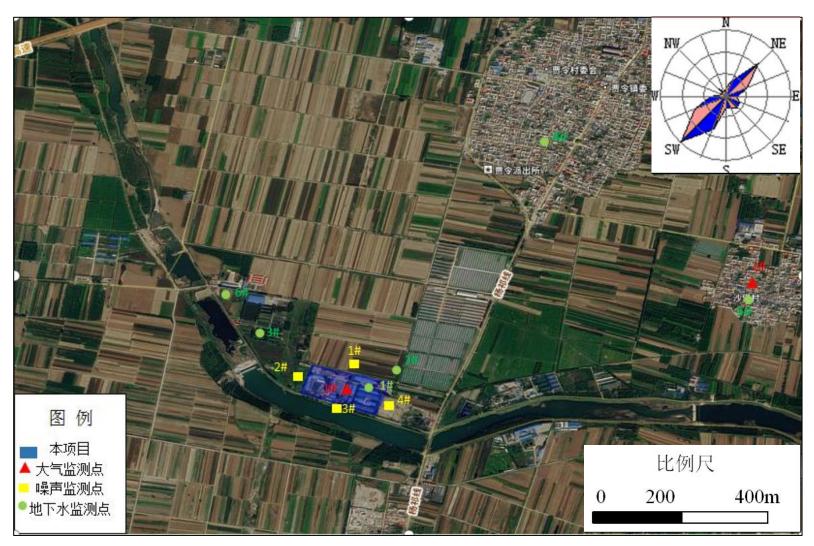


图 4.3-1 本项目大气、地下水、声环境质量监测布点

4.3.3 地下水环境质量现状

本次评价为了解评价区地下水环境质量现状,委托山西蓝源成环境监测有限公司于 2021 年 7 月 18 日对《山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目》地下水进行监测,2021 年 10 月 29 日对《山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目》石油类进行监测。

(1) 监测点布设

为了全面反映评价区地下水环境质量,结合评价等级、厂址位置、地下水流向、周围环境敏感点、地下水污染源分布等,根据《环境影响评价技术导则地下水环境》(HJ610-2016),确定地下水水质监测点为厂区附近6个潜水监测井,所有水质监测点兼作为水位监测点,另有3口水井单独作为水位监测点,下表给出了各监测点位置等情况。

编号	位置	相对本项目位	布点原则	含水层类	地下水监		
		置		型	测类型		
W1	厂区东北侧	厂区东北侧 上游		潜水			
W2	厂区内	厂区内	厂区内	潜水	 水质、水位		
W3	厂区西北侧	厂区西北侧 480 米	下游	潜水	小灰、小型 		
W4	沙堡村	厂区东北侧 2100 米	上游	潜水			
W5	贾令村	厂区东北侧 1800 米	上游	潜水	水位		
W6	灌溉水井	厂区西北侧 1000 米	下游	潜水			

表 4.3-6 地下水监测点分布

(2) 监测项目及频次

监测项目:色度、总硬度、溶解性总固体、挥发酚、耗氧量、亚硝酸盐、 氨氮、氰化物、六价铬、砷、菌落总数、总大肠菌群、汞、铅、镉、铁、锰、 氟化物、氯化物、硝酸盐、硫酸盐、石油类共 22 项,同时记录各监测点地面标 高、井深、水位标高和水温。并记录监测水井的水层类型。

同期检测分析地下水环境中 K^+ 、 Na^+ 、 Ca^{2+} 、 Mg^{2+} 、 CO_3^{2-} 、 HCO^{3-} 、 Cl^- 、 SO_4^{2-} 的浓度。

监测频次:水质、水位均评价期监测1次。

(3) 采样与分析方法

按照《地下水环境监测技术规范》(HJ/T 164-2020)和《环境影响评价技术导则地下水环境》(HJ610-2016)的要求进行采样和分析。

表 4.3-7 地下水环境质量现状监测分析方法

	衣 4.3-/ 地下小环境灰里巩认监侧分价	刀伍
项目	监测分析方法	检出限
色度	铂钴比色法 GB 11903—89	/
耗氧量	高锰酸钾滴定法 GB/T5750.7-2006	0.05mg/L
总硬度	乙二胺四乙酸二钠滴定法 GB/T5750.4-2006	1.0mg/L
硫酸盐	离子色谱法 HJ84-2016	5mg/L
氨氮	纳氏试剂光度法 GB/T5750.5-2006	0.02mg/L
硝酸盐	离子色谱法 GB/T5750-2006	0.016mg/L
亚硝酸盐	重氮偶合分光光度 GB/T5750.5-2006	0.001mg/L
砷	氢化物原子荧光法 GB/T5750.6-2006	0.3μg/L
 汞	原子荧光法 GB/T5750.6-2006	0.04μg/L
氟化物	离子选择电极法 GB/T7487-1987	0.05mg/L
氯化物	离子色谱法 GB/T5750-2006	1.0mg/L
氰化物	异烟酸-吡唑啉酮分光光度法 GB/T5750.5-2006	0.002mg/L
挥发酚	4-氨基安替比林分光光度法 GB/T5750.4-2006	0.002mg/L
菌落总数	平皿计数法 GB/T5750.12-2006	/
总大肠菌群	多管发酵法 GB/T5750.12-2006	/
铅	原子吸收分光光度 GB/T5750.6—2006	5μg/L
 镉	原子吸收分光光度 GB/T5750.6—2006	1μg/L
铁	原子吸收分光光度 GB/T5750.6—2006	0.3mg/L
	原子吸收分光光度 GB/T5750.6—2006	0.1mg/L
溶解性总固体	称量法 GB/T5750.4—2006	4mg/L
六价铬	二苯碳酰二肼分光光度法 GB/T5750.6—2006	0.004mg/L
钾	水质可溶性阳离子的测定离子色谱法 HJ812-2016	0.03mg/L
钠	水质可溶性阳离子的测定离子色谱法 HJ812-2016	0.010mg/L
钙	水质可溶性阳离子的测定离子色谱法 HJ812-2016	0.02mg/L
镁	水质可溶性阳离子的测定离子色谱法 HJ812-2016	0.002mg/L

碳酸根	《地下水质检验方法滴定法测定碳酸根、	1
4灰 質文作区	重碳酸根和氢氧根》(DZ/T0064.49-1993)	/
碳酸氢根	《地下水质检验方法滴定法测定碳酸根、	1
1次段全位	重碳酸根和氢氧根》(DZ/T0064.49-1993)	/
	《地下水质检验方法离子色谱法测定氯	
氯离子	离子、氟离子、溴离子、硝酸根和硫酸根	0.007 mg/L
	》(DZ/T0064.51-1993)	
	《地下水质检验方法离子色谱法测定氯	
硫酸根	离子、氟离子、溴离子、硝酸根和硫酸根	0.018 mg/L
	》(DZ/T0064.51-1993)	
石油类	水质 石油类的测定 紫外分光光度法	0.01 mg/L
74個大	НЈ970-2018	0.01 mg/L

(4) 监测结果及评价

地下水水质现状监测结果见下表。

从监测结果可以看出,3个水质监测点各监测指标均满足《地下水质量标准》(GB/T14848-2017)中Ⅲ类标准限值,且部分监测项目均低于检出限。项目所在区域地下水环境质量良好。

					表 4.3-	8 地	!下水水质	监测结	果表	r	ng/m³(pl	H 无纲	量)					
采样点位		色度 (度)	总硬 度	溶解性 总固体	挥发 酚类	耗氧量	亚硝酸 盐氮	宴 氨	氮 氰	化物	六价铬	砷	菌落总数 CFU/mL	总大肠菌群 MPN/100mI	石油类	井深 m	水位 m	水温 ℃
	平均值	ND	182	580	ND	0.67	0.001	0.0	05	ND	ND	ND	80	<2	ND	210	50	12.1
贾令村	Pi	/	0.4044	0.58	/	0.2233	0.001	0.	1	/	/	/	0.8	/	/	/	/	/
	达标情况	/	达标	达标	/	达标	达标	达	标	/	/	/	达标	/	/	/	/	/
	平均值	ND	203	450	ND	0.53	0.001	0.0	04	ND	ND	ND	94	<2	ND	190	70	11.9
厂区内	Pi	/	0.4511	0.45	/	0.1767	0.001	0.0	08	/	/	/	0.94	/	/	/	/	/
	达标情况	/	达标	达标	/	达标	达标	达	标	/	/	/	达标	/	/	/	/	/
	平均值	ND	173	520	ND	0.55	0.001	0.0	06	ND	ND	ND	90	<2	ND	220	60	12.2
厂区西北侧	Pi	/	0.3844	0.52	/	0.1833	0.001	0.1	12	/	/	/	0.09	/	/	/	/	/
	达标情况	/	达标	达标	/	达标	达标	达	标	/	/	/	达标	/	/	/	/	/
厂区东北侧																210	50	
沙堡村		-														180	70	
灌溉水井		-				-										200	60	
				_					·									
采样点位		汞	钅	沿锅	铁	锰	氟化物	氯化物	硝酸 盐氮	硫酸盐	bh Na+	K ⁺	Mg ²⁺	Ca ²⁺	CO ₃ ² -	HCO ₃ -	Cl-	SO ₄ ² -

	平均值	ND	ND	ND	ND	ND	1.22	68.6	0.28	70.2	176	1.76	27.3	28.9	0	398	68.6	70.2
贾令村	Pi	/	/	/	/	/	1.22	0.2744	0.014	0.2808	/	/	/	/	/	/	/	/
	达标情况	/	/	/	/	/	不达标	达标	达标	达标	/	/	/	/	/	/	/	/
	平均值	ND	ND	ND	ND	ND	0.81	42.3	0.30	52.2	115	1.76	24.9	42.5	24	339	42.3	52.2
厂区内	Pi	/	/	/	/	/	0.81	0.1692	0.015	0.2088	/	/	/	/	/	/	/	/
	达标情况	/	/	/	/	/	达标	达标	达标	达标	/	/	/	/	/	/	/	/
	平均值	ND	ND	ND	ND	0.1	0.79	56.5	0.21	68.0	151	1.46	24.6	29.1	15	360	56.5	68.0
厂区西北侧	Pi	/	/	/	/		0.79	0.226	0.0105	0.272	/	/	/	/	/	/	/	/
	达标情况	/	/	/	/		达标	达标	达标	达标	/	/	/	/	/	/	/	/

4.3.4 声环境质量现状

(1) 监测布点

为了了解项目周边环境噪声现状,本次评价委托山西蓝源成环境监测有限公司于 2021 年 7 月 15-16 日对《山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目》噪声进行监测,在厂界四周外 1m 处分别设置 1 个噪声监测点。

(2) 监测时间及频次

监测时间为2021年5月15-16日,共两天,昼夜各监测一次。

(3) 监测方法

监测项目为等效 A 声级,监测方法按《声环境质量标准》(GB3096-2008)中有关规定进行。

(4) 监测结果

表 4.3-9 声环境质量现状监测结果表单位: dB(A)

	监测时段		· · ·	昼间					夜间		
监测日期	项目 点位	L ₁₀	L ₅₀	L ₉₀	L_{eq}	SD	L ₁₀	L ₅₀	L ₉₀	L_{eq}	SD
	1#厂界北	53.0	50.6	49.8	51.3	1.3	40.4	38.6	36.8	39.2	1.9
2021.7.15	2#厂界西	54.4	52.8	50.2	53.3	1.6	46.0	42.8	40.4	43.5	2.0
2021.7.13	3#厂界南	51.0	49.4	48.4	50.2	1.6	43.0	39.6	37.4	40.5	2.1
	4#厂界东	55.2	52.8	50.4	53.4	2.1	46.0	42.4	39.6	43.3	2.3
	1#厂界北	55.0	52.6	51.0	53.1	1.5	41.0	38.8	37.2	39.6	1.8
	2#厂界西	56.4	53.0	50.4	54.0	2.4	45.2	42.8	41.0	43.3	1.7
2021 7 16	3#厂界南	52.4	49.8	47.2	50.5	2.1	41.8	39.8	37.8	40.3	1.8
2021.7.16	4#厂界东	56.0	53.6	51.4	54.3	1.9	44.8	41.8	38.6	43.2	2.8
	标准限值	60					50				
	达标情况					达	,				

根据监测结果可知,本项目厂界四周昼间及夜间现状环境噪声均满足《声环境质量标准》(GB3096-2008)2类标准值要求。评价区域声环境质量较好。

5. 环境影响预测与评价

5.1 施工期环境影响预测与评价

根据现场勘查,本项目酿造四、五、六车间已基本改建完成,灌装车间已基本建设完成;工程施工内容主要在厂区内现有二车间内拆除现有窖池,改建为地缸,拆除现有办公化验用房改建为酿造七车间;施工时间约6个月,施工期较短。施工过程中仅有噪声和少量固体废弃物产生。施工过程中仅有噪声和少量固体废弃物产生。

5.1.1 施工废气

施工期涉及少量土建工程,主要大气环境影响为扬尘对周围环境空气的影响。

针对本项目施工期产生的扬尘,提出以下防治措施:

- (1)施工时,应根据《建设工程施工现场管理规定》设置施工标志牌,并标明当地环境保护主管部门的污染举报电话。
- (2)施工工地要做到"6个100%",即施工工地周边100%围挡、物料堆放100%覆盖、出入车辆100%冲洗、施工现场地面100%硬化、拆迁工地100%湿法作业、渣土车辆100%密闭运输。
 - (3) 禁止施工现场搅拌混凝土,全部采用预拌商品混凝土。
- (4)进出施工现场的运输车辆要采用密闭车斗保证物料不遗撒外漏;施工物料运输车辆要合理选择运输路线,尽可能避开集中居民区和主要交通干道,按照批准的路线和时间进行物料运输。
- (5)土方的开挖、运输和填筑等施工过程,遇到干燥、易起尘的土方工程作业时,应辅以洒水压尘,尽量缩短起尘操作时间。遇到四级或四级以上大风天气,应停止土方作业,同时作业处覆盖防尘网。
- (6)施工过程使用的水泥、石灰、砂石、铺装材料等易产生扬尘的建筑材料,应密闭存储。
- (7)施工过程产生的弃土及建筑垃圾应及时清运,如场区内堆存时间较长, 应覆盖防尘网并定期喷水压尘。

采取以上措施后,本项目施工期扬尘对周围环境影响较小。

5.1.2 施工废水

施工期产生的废水主要为施工废水和施工人员生活污水。

(1) 施工废水

施工废水主要为设备冲洗水,主要污染物为悬浮物,产生量较少,经集水沉淀池收集沉淀后用于施工现场洒水抑尘,不外排,对周围环境的影响较小。

(2) 施工人员生活污水

本项目施工期施工人员为周边村民,不在厂内设置施工营地,且施工人员数量较少。施工期会产生少量生活污水,经厂区内现有污水管道进入污水处理站,无生活污水外排。

采取以上措施后,本项目施工期废水对周围环境影响较小。

5.1.3 施工噪声

施工场地噪声主要是设备安装、物料装卸噪声。

建设单位应优先选用低噪声设备和工作方式,加强设备的维护与管理。加强对施工人员的监督和管理,促进其环保意识的增强,减少不必要的人为噪声。如对施工用框架模板轻拿轻放,不得随意乱甩等。本项目施工阶段一般均为室内作业,经过墙体隔声等防治措施,噪声传播一般可控制在 50 m 范围内,受影响范围较小,且厂区周边区域无声环境敏感目标。综上所述,施工期噪声不会对周边环境产生明显不利影响。

5.1.4 施工固体废物

施工期间产生的固体废物包括设备的废弃包装材料和施工人员生活垃圾, 经收集后应及时清运或外售给物资回收部门;拆除实验室产生的建筑垃圾送至 市政部门指定地点堆存。施工单位应对所有施工人员加强教育和管理,全员做 到不随意乱丢废弃物,避免污染和影响周围市容环境。

综上所述,施工期产生污染物较少,预计不会对周边环境产生明显影响。 待施工结束后大多可恢复至现状水平。

5.2 运营期环境影响预测与评价

5.2.1 大气环境影响预测与评价

5.2.1.1 大气污染源调查

(1) 调查内容

根据《环境影响评价技术导则大气环境》(HJ2.2-2018),本次二级评价 需调查本项目污染源(包括现有和新增),拟被替代污染源,本项目无替代污 染源。

(2) 数据来源

本项目大气污染源主要为:

有组织排放源:排气筒 P1:卸粮、清理筛分粉尘;

排气筒 P2: 粉碎过程产生的粉尘;

排气筒 P5: 燃气锅炉产生的烟尘、SO2、NOx;

排气筒 P6: 污水处理设施产生的恶臭污染物 (H2S、NH3)。

(3) 调查方法

根据 HJ2.1-2016、HJ942-2018、HJ884-2018,调查方法采用类比法、产污数法、经验系数法。

(4) 大气污染源调查结果

根据工程分析章节,本工程大气主要污染源调查结果见表 3.2-18。正常工 况下本项目点源及面源污染物排放情况如下表所示。

表 5.2-2 主要废气污染源参数一览表(点源)

				C 3.2-2		WY 2 201	14 (WAY)				
污染源名	排气筒底部	部中心坐标/m	排气筒底		排气筒	参数		年排放小	排放	污染物名	排放速率
称	X	Y	部海拔高 度/m	高度/m	内径 (m)	流速 (m/s)	温度/℃	时数/h	工况	称	kg/h
卸粮、清理 筛分粉尘		20′18.89″ 3′52.15″	764	15	0.5	19.82	25	385	正常	PM ₁₀	0.21
粉碎粉尘		0′18.89″ 3′52.15″	764	22	0.5	22.65	25	1400	正常	PM ₁₀	0.24
	11202	0′22.81″								PM ₁₀	0.038
锅炉废气		3'49.63"	764	8	0.6	7.67	80	4200	正常	SO_2	0.023
	31 2.	3 49.03								NOx	0.15
污水处理	112°20	/22.18",	764	1.5	0.4	11.06	25	7200	工告	NH ₃	0.0063
设施臭气	37°23	3′50.86″	764	15	0.4	11.06	25	7200	正常	H ₂ S	0.00024

表 5.2-3 主要废气污染源参数一览表(面源)

名称		面源	坐标/m Y	面源海拔 高度/m	面源长 度/m	面源宽 度(m)	与正北 夹角	面源有效 排放高度 m	年排 放小时数 h	排放 工况	污染物名 称	排放速率 kg/h
卸粮过程	Ē	112.338378	112.338378°, 37.397763°		6	3	0	5	385	正常	TSP	0.473
污水处理的	と施	112.339451	°, 37.397458°	764	30	9	15	6	7200	正常	NH ₃ H ₂ S	0.017 0.00067
酿造车间	J	112.339380	°, 37.398138°	764	400	185	15	8	7200	正常	NMHC	0.6108

5.2.1.2 估算模型参数

本项目估算采用采用《环境影响评价技术导则-大气环境》(HJ2.2-2018)附录 A 推荐模型中的估算模型 AERSCREEN,估算模型 参数见下表。

表 5.2-4 估算模型参数表

	参数	取值
· ** ** ** ** ** ** ** ** ** ** ** ** **	城市/农村	农村
城市/农村选项	人口数 (城市选项时)	
最高	环境温度/℃	38.9
最低	环境温度/℃	-24.9
土地	也利用类型	农作地
区均	或湿度条件	中等湿度
是否考虑地形	考虑地形	是☑ 否□
走百 <i>气</i> 忘地形	地形数据分辨率/m	90
	考虑岸线熏烟	是□ 否☑
是否考虑岸线熏烟	岸线距离/km	
	岸线方向/°	

5.2.1.3 估算模型计算结果

本项目大气污染物估算模型计算结果见下表。

表 5.2-5 估算模型计算结果(有组织)

	代 J.2-5													
	排气筒 P1		排气筒 P2	(粉碎粉			排气筒 P5	(燃气锅炉》	5气)		 排气筒 P	6 (污水	处理设施废气	.)
下风	筛分粉	尘)	尘)				7,11 (1,7	·//// • • • • • • • • • • • • • • • • •	~ **		711 41-4 -			,
向距	PM	10	PM_1	0	NO	2	PM	I ₁₀	SO_2		NH ₃		H_2S	
离 /m	预测质量 浓度 /(μg/m³)	占标 率 P _i /%	预测质量 浓度 /(μg/m³)	占标 率 P _i /%	预测质量 浓度 /(μg/m³)	占标率 P _i /%	预测质量浓 度/(μg/m³)	占标率 P _i /%	预测质量浓度 /(μg/m³)	占标率 P _i /%	预测质量浓 度/(μg/m³)	占标 率 P _i /%	预测质量 浓度 /(μg/m³)	占标 率 P _i /%
10	3.81E-04	0.08	2.91E-04	0.06	2.37E-03	1.18	2.41E-04	0.05	1.32E-04	0.03	5.19E-05	0.03	2.08E-06	0.02
50	7.24E-03	1.61	2.52E-02	5.61	1.44E-02	7.2	1.47E-03	0.33	0.81E-03	0.16	1.02E-03	0.51	4.10E-05	0.41
100	1.42E-02	3.16	3.55E-02	7.9	1.37E-02	6.86	1.40E-03	0.31	0.750E-03	0.15	1.53E-03	0.77	6.13E-05	0.61
200	1.69E-02	3.76	2.53E-02	5.63	9.77E-03	4.88	9.96E-04	0.22	5.12E-04	0.10	1.47E-03	0.74	5.88E-05	0.59
300	1.46E-02	3.25	1.86E-02	4.13	8.95E-03	4.47	9.13E-04	0.2	4.63E-04	0.09	1.27E-03	0.64	5.09E-05	0.51
400	1.17E-02	2.61	1.51E-02	3.35	8.32E-03	4.16	8.49E-04	0.19	4.36E-04	0.09	1.02E-03	0.51	4.08E-05	0.41
500	9.57E-03	2.13	1.46E-02	3.25	7.78E-03	3.89	7.94E-04	0.18	4.23E-04	0.08	8.31E-04	0.42	3.33E-05	0.33
600	8.92E-03	1.98	1.36E-02	3.02	7.21E-03	3.61	7.36E-04	0.16	3.69E-04	0.07	7.76E-04	0.39	3.10E-05	0.31
700	8.53E-03	1.9	1.23E-02	2.74	6.55E-03	3.28	6.69E-04	0.15	3.41E-04	0.07	7.42E-04	0.37	2.97E-05	0.3
800	8.03E-03	1.78	1.12E-02	2.48	5.91E-03	2.96	6.03E-04	0.13	3.16E-04	0.06	6.98E-04	0.35	2.79E-05	0.28
900	7.49E-03	1.66	1.01E-02	2.25	5.34E-03	2.67	5.45E-04	0.12	2.96E-04	0.06	6.51E-04	0.33	2.60E-05	0.26
1000	6.96E-03	1.55	9.21E-03	2.05	4.83E-03	2.42	4.93E-04	0.11	2.65E-04	0.06	6.06E-04	0.3	2.42E-05	0.24
2000	4.38E-03	0.97	6.37E-03	1.42	3.23E-03	1.61	3.30E-04	0.07	1.72E-04	0.03	3.81E-04	0.19	1.52E-05	0.15
2500	4.37E-03	0.97	5.42E-03	1.09	2.93E-03	1.27	2.87E-04	0.06	1.59E-04	0.03	3.38E-04	0.2	1.49E-05	0.16

下风最大量度占率%	1.69E-02	3.76	3.58E-02	7.96	1.49E-02	7.47	1.52E-03	0.34	0.87E-03	0.17	1.60E-03	0.8	6.41E-05	0.64
出现 距离 /m	20	0	89					57				82		

表 5.2-6 估算模型计算结果(无组织)

	卸粮过租	1		污水处	理设施		酿造车间		
下风向距离	TSP		NH ₃		H_2S		NMHC		
/m	预测质量浓度	占标率 P;/%	预测质量浓度	占标率 P;/%	预测质量浓度	占标率 P;/%	预测质量浓度	占标率 P _i /%	
	$/(\mu g/m^3)$	口小平17/0	$/(\mu g/m^3)$	口4小牛1//0	$/(\mu g/m^3)$	口你平1//0	$/(\mu g/m^3)$	口小小+1//0	
10	2.93E-02	3.25	5.81E-03	2.9	2.29E-04	2.29	6.95E-02	3.48	
50	9.56E-03	1.06	3.48E-03	1.74	1.37E-04	1.37	8.50E-02	4.25	
100	7.68E-03	0.85	2.82E-03	1.41	1.11E-04	1.11	1.03E-01	5.17	
200	5.46E-03	0.61	2.01E-03	1	7.91E-05	0.79	1.35E-01	6.76	
300	4.56E-03	0.51	1.69E-03	0.84	6.65E-05	0.66	1.42E-01	7.12	
400	3.91E-03	0.43	1.45E-03	0.72	5.70E-05	0.57	1.47E-01	7.33	
500	3.41E-03	0.38	1.26E-03	0.63	4.96E-05	0.5	1.43E-01	7.15	
600	3.01E-03	0.33	1.11E-03	0.56	4.38E-05	0.44	1.36E-01	6.79	
700	2.70E-03	0.3	9.99E-04	0.5	3.94E-05	0.39	1.27E-01	6.37	

下风向最大质量浓度出现距离/m	10	10		1	375			
率%		3.23	0.03E-03	3.33	2.02E-04	2.02	1.47E-01	7.55
下风向最大质量浓度及占标	2.93E-02	3.25	6.65E-03	3.33	2.62E-04	2.62	1.47E-01	7.33
2500	9.40E-04	0.1	3.86E-04	0.16	1.48E-05	0.13	7.35E-02	3.05
2000	1.19E-03	0.13	4.40E-04	0.22	1.74E-05	0.17	8.08E-02	4.04
1000	2.07E-03	0.23	7.67E-04	0.38	3.02E-05	0.3	1.13E-01	5.65
900	2.25E-03	0.25	8.31E-04	0.42	3.27E-05	0.33	1.16E-01	5.81
800	2.45E-03	0.27	9.07E-04	0.45	3.57E-05	0.36	1.19E-01	5.95

根据估算结果,卸粮、清理筛分过程 PM_{10} 最大落地浓度为 $1.69E-02\mu g/m^3$,占标率为 3.76%, $PM_{2.5}$ 最大落地浓度为 $8.45E-03\mu g/m^3$,占标率为 3.76%,出现距离为 200m 处;粉碎过程 PM_{10} 最大落地浓度 $3.58E-02\mu g/m^3$,占标率为 7.96%, $PM_{2.5}$ 最大落地浓度为 $1.79E-02\mu g/m^3$,占标率为 7.96%;锅炉废气中 NO_2 最大落地浓度 $1.49E-02\mu g/m^3$,占标率为 7.47%,出现距离为 57m 处, PM_{10} 最大落地浓度 $1.52E-03\mu g/m^3$,占标率为 0.34%,出现距离为 57m 处;污水处理设施排气筒 NH_3 最大落地浓度为 $6.41E-05\mu g/m^3$,占标率为 0.64%, H_2S 最大落地浓度为 $1.60E-03\mu g/m^3$,占标率为 0.8%,出现距离为 82m 处。表明本项目有组织排放的大气污染物对周围大气环境影响很小。

卸粮过程无组织 TSP 最大落地浓度为 2.93E-02μg/m³, 占标率为 3.52%, 出现距离为 10m 处; 污水处理站各设施无组织 NH₃ 最大落地浓度为 6.65E-03μg/m³, 占标率为 3.33%, H₂S 最大落地浓度为 2.62E-04μg/m³, 占标率为 2.62%, 出现距离为 16m 处; 酿造车间无组织 NMHC 最大落地浓度为 1.47E-01μg/m³, 占标率为 7.33%, 出现距离为 375m 处。表明本项目无组织排放的大气污染物对周围大气环境影响较小。

5.2.1.4 大气环境防护距离

本项目大气环境影响评价等级为二级。根据估算模型的估算结果可知,项目厂界浓度可满足大气污染物厂界浓度限值,厂界外污染物短期贡献浓度满足环境质量标准,无需设置大气环境防护距离。

5.2.1.5 污染物排放量核算

本次改扩建工程有组织排放的污染物主要为一体化筒仓卸粮及除杂、粉碎工序产生的粉尘,燃气锅炉产生的烟尘、 SO_2 和 NO_X ,污水处理站产生的 NH_3 、 H_2S ,无组织排放的污染物主要为卸粮工序产生的粉尘、污水处理站产生的 NH_3 、 H_2S 、酿造车间产生 NMHC。项目有组织污染物排放量核算见下表。

表 5.2-7 大气污染物有组织排放量核算表

		× 3.2-1		V IV/I -P4			
序号	排放口编号	污染物	核算排放浓度	核算排放速率	核算年排放量		
万 5	1117以口细与	行朱彻	$/(mg/m^3)$	/(kg/h)	/(t/a)		
			主要排放口				
/	/	/	/	/	/		
主要	要排放口合计		/		/		
1	卸粮、清理筛分 过程	颗粒物	30.0	0.42	0.161		
2	粉碎过程	颗粒物	30.0	0.48	0.656		
		PM ₁₀	5	0.024	0.472		
3	锅炉废气	SO_2	/	0.014	0.285		
		NO_X	50.0	0.245	2.18		
4	污水处理设施	NH ₃	3.5	0.0063	0.045		
4	恶臭	H ₂ S	0.13	0.00024	0.0017		
			1.289				
			0.285				
一舟	及排放口合计		NO_X		2.18		
			NH ₃		0.045		
			H ₂ S		0.0017		
			有组织排放总计				
			颗粒物		1.289		
-	有组织排放		SO_2		0.285		
1	自组织排放 总计		NO_X		2.18		
	ار میں ال			0.045			
			H_2S		0.0017		

表 5.2-8 大气污染物无组织排放量核算表

			10 3.2-0	70 (1370 1370 3	19/11/从至1/8升代		
		产污			国家或地方污染物]排放标准	年排放
序号	排放口	万円	污染物	主要防治措施	1-1/1- 1-1-	浓度限值	
		1 1/1			标准名称	$/(mg/m^3)$	量/(t/a)
1	卸粮坑	卸粮	TSP	①采用减速淌板,降低物料的下降速度; ②配置自动调速输送机减少原料进料波动,可减少粉尘上扬和外溢	《大气污染物综合 排放标准》 (GB16297-1996)	1.0	0.075
	污水处理	污水	NH ₃	①定期喷洒生物除 臭剂;	《恶臭污染物排放	1.5	0.0094
2	2 设施		H ₂ S	②项目区及厂界绿化。	标准》 (GB14554-93)	0.06	0.00036
3	酿造车间有机废 气		NMHC	保持车间通风	《挥发性有机物无 组织排放控制标 准》(GB 37822-2019)	/	8.882
				无组织排放总	计		
					TSP		0.075
	工组织批选当江					0.0094	
	无组织排放总计				0.00036		
						8.882	

表 5 2-9 大气污染物排放量核管表

	衣 3.2-9 人气污染物	7. 作队里依异农
序号	污染物	年排放量/(t/a)
1	颗粒物	1.364
2	NH ₃	0.0544
3	H_2S	0.0021
4	NMHC	8.882
5	SO_2	0.285
6	NO_X	2.18

表 5.2-10 污染源非正常排放量核算

		10 3.2 10	177	**************************************	主以开		
序号	排放源	非正常 排放原 因	污染物	非正常排放 速率/(kg/h)	单次持续 时间/h	年发生 频次/次	应对措 施
1	卸粮、清理筛分 过程	布袋除	粉尘	7.39	0.5h	2	根据布 袋破损
2	粉碎过程	生泄漏		19.19	0.5h	2	情况更 换

5.2.1.6 大气环境影响评价结论

根据祁县 2022 年环境空气例行监测数据统计资料,项目区 SO_2 、 NO_2 、CO年评价指标满足《环境空气质量标准》(GB3095-2012)要求; PM_{10} 、 $PM_{2.5}$ 、 O_3 出现不同程度的超标。因此项目区为不达标区。

本次评价委托山西蓝源成环境监测有限公司于 2021 年 5 月 15-21 日对本项目评价区的特征污染物 (TSP、H₂S、NH₃)进行了环境空气质量现状监测。2021年 10 月 28 日-11 月 3 日对本项目评价区的特征污染物非甲烷总烃进行监测。

由监测结果可知,项目区2个监测点环境空气质量TSP、H₂S、NH₃、NMHC全部达标。

根据估算模式计算结果,本项目在正常工况下大气污染物最大落地浓度占标率为 7.47%,属于二级评价,各项污染物最大估算值均较小,达不到标准的 10%,因此本项目大气污染物的排放不会对周边大气环境造成明显的影响。

(1) 污染控制措施可行性及方案比选结果

采取环评提出的污染控制措施后,本项目各项大气污染物排放满足排放标准,满足经济、技术可行性,对环境影响较小。

(2) 大气环境防护距离

本项目环境空气评价等级为二级,无须进行大气环境防护距离计算。

(3) 污染物排放量核算结果

根据本项目污染物排放量核算结果,本项目全厂有组织排放量为: 颗粒物 1.289t/a、 NH_3 0.045t/a、 H_2S 0.0017t/a; 无组织排放量为: TSP 0.075t/a、 NH_3 0.0094t/a、 H_2S 0.00036t/a、NMHC8.882 t/a。

5.2.1.7 大气环境影响评价自查表

本项目的大气环境影响评价自查表见下表。

	工作内容		自查项目						
评价	评价等级	一级□	二级团		三级口				
等级					边长= 5				
与范	评价范围	边长= 50 km□	边长 5~50						
围					km☑				
7年1分	SO ₂ +NO _x 排	≥ 2000 t/a□	500~2000	t/o=	<500 t/a□				
评价 因子	放量	≥ 2000 t/a⊔	300, 2000	va⊔	<500 t/a ☑				
四丁	评价因子	基本污染物(PM ₁	0, PM _{2.5} , SO ₂ , NO ₂ ,	包括二次	PM _{2.5} □				

表 5.2-11 大气环境影响评价自查表

	工作内容			自	查项目					
		其他污染物	勿(TSP	、CO) 、NH3、H2S、臭 I烷总烃)	上气浓度、	-	不包括二	次 P	M _{2.5} ☑	
评价 标准	 评价标准	国家标识	隹☑	 地方标》	Èo	ß	対录 D ☑]	其他标准□	
	环境功能区	一类区	<u> </u>		二类区	Z			一类区和二 类区 _□	
	评价基准年			(2	2022)年	<u>_</u>				
现状评价	环境空气质量 现状调查数据 来源		例行监测数 主管部门发布的 据□		长期例行监测数 据□ 主管部门发布的数据 ☑			现	.状补充监 测☑	
	现状评价		达标区□				不达	标区[7	
污染 源调 查	调查内容	本项目正行 源区 本项目非 放源区 现有污染	l 正常排 ☑	拟替代的污	染源□	其他在建、拟建 项目污染源□			区域污染源□	
	预测模型	AERMOD	ADMS	AUSTAL2000	EDMS/A	ÆDT	CALPUI	P 格	其他 其他 □	
	预测范围	边长≥ 50	km□	边廿	边长 5~50 km □		j	边长 = 5 km □		
大气	预测因子		预测	因子 ()		包括二次 PM _{2.5□} 不包括二次 PM _{2.5□}				
环境 影响 预测	正常排放短期 浓度 贡献值	C 本	项目最	大占标率≤1009	%□	С	本项目最 100	贵大占)%□	i标率>	
与评	正常排放年均	一类区	C 本 ^项	页目最大占标率	≦≤10%□	C 本	项目最为	大标率	≤ >10% □	
价	浓度贡献值	二类区	C 本 ^坪	页目最大占标率	≦≤30%□	C 本	项目最为	大标译	≝>30% □	
	非正常排放 1 h 浓度贡献值	非正常持续		C 非正常	占标率≤1	00% [常占标率 00‰□	
	保证率日平均 浓度和年平均 浓度叠加值		C 叠	加达标□			C 叠加不达标□			
	区域环境质量 的整体变化情况		k <u>s</u>	≦−20% □	k>−20% □]		
环境	污染源监测	监测因子:	(颗粒	物、SO ₂ 、NOx、	有组	织废	1. 上上 三 上上 三 上上 三 上上 三 上 三 上 三 上 三 上 三 上		无监测□	

	工作内容		自	查项目			
监测		林格曼黑度、臭气	[浓度、氨、硫	无组织废气监测☑			
计划		化氢、非甲烷	烷总烃)				
	环境质量监测	监测因子:	监测点位数()	无监测☑			
	环境影响		可以接受	☑不可以接受□			
	大气环境防护 距离	·界最远()m					
评价		有组织排放总量					
结论	污染源年排放	SO ₂ : (0.173) t/a	NO _X : (3.084) t/a	颗粒物:(/1.233)t/a	VOCs: (/) t/a		
	量		无组织	炽排放总量			
		SO ₂ : (/) t/a	NO _X : (/) t/a	颗粒物:(0.0103)t/a	VOCs: (/)		
		注:"□"为勾选项,	,填"√";"()	"为内容填写项			

5.2.2 地表水环境影响评价

本项目产生的废水包括生产废水和生活污水,改建完成后全厂废水排放量为 221.68m³/d,废水主要污染物为 COD、BOD5、SS、NH3-N、TP、TN。污水处理站设计规模为 250m³/d,采用"格栅间+调价池+气浮池+IC 厌氧反应器+AO/AO/AO+MBR 膜+混凝沉淀+过滤+消毒"工艺,经处理后废水满足《污水排入城镇下水道水质标准》(GB/T 31962-2015)A 级标准限值。排放方式属于间接排放,地表水环境影响评价等级为三级 B。本次评价主要对污水处理设施可行性及排放达标情况进行分析。

5.2.2.1 正常工况

本项目生产过程产生的废水主要包括酿酒车间的锅底水、黄浆水、地面冲洗废水、设备清洗废水和循环冷却水排水以及锅炉排水等。本项目的生产废水可以分为高浓度废水和低浓度废水。生活污水和生产废水通过管网直接进入厂区污水处理站,废水水量水质情况见下表。

	衣 5.2-1.	2 生产废	水中吞污染物	1的产生浓度/	2产生重	
污染源	废水产生量		污染物	产生浓度	产生量	
	m³/d	m³/a	1370173	(mg/L)	(t/d)	(t/a)
			COD	16000	2.32	696.0
高浓度有	1.45	42500	BOD ₅	7000	1.015	304.5
机废水	145	43500	SS	500	0.073	21.75
			NH ₃ -N	100	0.015	4.35

表 5 2-12 生产废水中各污染物的产生浓度及产生量

			TP	125	0.018	5.438
			TN	150	0.022	6.525
			COD	500	0.038	11.502
	76.68	23004	BOD ₅	200	0.015	4.601
中、低浓			SS	450	0.035	10.352
度废水			NH ₃ -N	35	0.003	0.805
			TP	10	0.0008	0.23
			TN	40	0.003	0.920

本项目污水处理站处理规模为 250m³/d, 处理工艺为"格栅间+调节池+气浮池+IC 厌氧反应器+AO/AO/AO+MBR 膜+混凝沉淀+过滤+消毒", 工艺流程选取合理。污水处理系统工艺流程主要包括集水池、格栅、调节池、气浮池、IC 反应器、AO/AO/AO 池、MBR 池、混凝沉淀池、中间水池、石英砂过滤器、活性炭过滤器、清水池等。经处理后废水排入市政管网,最终进入祁县鸿宇市政污水处理有限公司处理。本项目废水经处理后的排放浓度及排放量见下表。

废水量 $65637 \text{m}^3/\text{a}$ 水质指标 pН COD BOD₅ SS NH₃-N TP TN 处理后浓度 6-9 105 105 7 30 3.0 62.8 (mg/L)排放量(t/a) 6.892 6.892 0.459 / 1.969 0.197 4.122 排放标准 6-9 500 350 400 8.0 70 45 (mg/L)达标情况 达标 达标 达标 达标 达标 达标 达标

表 5.2-13 全厂工程废水排放情况

经处理后的废水主要污染物均能满足《污水排入城镇下水道水质标准》 (GB/T 31962-2015) A 级标准限值。

祁县鸿宇市政污水处理有限公司位于祁县县城西南的城赵镇九汲村南600m 处,占地约50亩,服务范围主要为祁县县城的居民生活污水,污水处理工艺为"A²/O+连续离子交换"工艺,经处理后废水污染物COD、氦氮、TP、全盐量达到《污水综合排放标准》(DB14/1928-2019)表3中二级排放标准,其余达到《城镇污水处理厂污染物排放标准》(GB18882-2002)中的一级A标准,用于祁县昌源河国家湿地公园景观补充水。目前污水处理厂设计规模为2万m³/d,运行负荷为90%,污水处理厂拟进行扩建,扩建完成后处理规模为3.5万m³/d,预计2024年投产。本项目全厂废水排放量为221.68m³/d,目前尚有余

量可处理本项目废水。

目前厂区污水管网已接入祁县鸿宇市政污水处理有限公司,厂区污水经处理后送至祁县鸿宇市政污水处理有限公司进行处理,项目废水不会直接排入水环境。

5.2.2.2 初期雨水

经计算本项目初期雨水量为 443.99m³, 环评要求建设 500m³ 初期雨水收集 池收集初期雨水, 收集后的初期雨水用于厂区绿化和厂区洒水降尘。

5.2.2.3 非正常工况

本项目处理后的最大废水量为 221.68m³/d, 经污水处理站处理后排入市政管网,进入祁县鸿宇市政污水处理有限公司处理。项目设置了 250m³ 的事故池,可暂存项目事故状态下 1d 的废水量,故可保证本项目事故废水不外排。

由此可见, 本项目的建设对区域水体环境质量影响较小。

5.2.2.4 废水排放信息

根据《环境影响评价技术导则 地表水环境》(HJ 2.3-2018),本项目废水排放相关信息如下:

表 5.2-14 废水类别、污染物及污染治理设施信息表

	表 5.2 TT									
废水		排放	排放		污染治理设施			排放口设置		
炎小 类别	污染物种类		规律 规律	污染治理设施	污染治理设施名	运 油.必用.15. 大士	排放口编号	是否符合要	排放口类型	
矢加 	天 加	去问	万九1丰	编号	称	污染治理设施工艺		求		
生活	COD _{Cr}					"格栅间+调节池+			☑企业总排	
		祁县鸿宇				气浮池+IC 厌氧反			□雨水排放	
污水	BOD ₅ ,	市政污水	连续排放,流量	N 650201	厂区综合污水处	应器	DWOOA	☑是	□清净下水排放	
41>=	SS、氨氮、总	处理有限	稳定	MF0391	理站	+AO/AO/AO+MBR	DW001	□否	□温排水排放	
生产	磷、总氮、	公司				膜+混凝沉淀+过滤			□车间会车间处理设	
废水	动植物油					+消毒"处理工艺			施排放口	
			间断排放,排放						□企业总排	
	COD_{Cr}								☑雨水排放	
五水	BOD ₅ ,	日海河	期间流量不稳	,	,	,	DW002	☑是	□清净下水排放	
附水	雨水 SS、氨氮、总	昌源河	定,但有规律,	/	/	/	DW002	□否	□温排水排放	
	磷、总氮		且不属于非周期						□车间会车间处理设	
			性规律						施排放口	

表 5.2-15 废水间接排放口基本情况表

排放口	排放口	地理坐标	废水排放			间歇排		受纳污水处理	!厂信息
编号	经度	纬度	量/(万 排放去向 排放规律		放时段	名称	污染物种类	国家或地方污染物排放标 准浓度限值(mg/l)	
								$\mathrm{COD}_{\mathrm{Cr}}$	40
				祁县鸿宇	连续排放,流量不		 祁县鸿宇市政	氨氮	2.0
DW001	112°20′	37°23′50	6.5637	市政污水	稳定,但有规律,	,		总磷	0.4
DWOOI	22.16"	.35"	0.3037	处理有限	且不属于周期性	/	公司	рН	6~9
				公司	规律		Z II	BOD_5	10
								SS	10

表 5.2-16 废水污染物排放信息表

序号	排放口编号	污染物种类	排放浓度/(mg/L)	新增日排放量 /(kg/d)	全厂日排放量/(kg/d)	新增年排放量/(t/a)	全厂年排放量/(t/a)
		悬浮物	10	1.509	2.217	0.453	0.656
		总磷	0.4	0.060	0.089	0.018	0.026
1	DW001	COD	40	6.036	8.867	1.811	2.625
1	DW001	总氮	2.0	0.302	0.443	0.091	0.130
		氨氮	2.0	0.302	0.443	0.091	0.130
		BOD ₅	10	1.509	2.217	0.453	0.656

表 5.2-17 环境监测计划及记录信息表

序	排放口	污染物	监测设施	自动监测设	自动监测设施的安装、维护等相关管理要求	自动监测是	手工监测采样	手工监测	手工测定
号	编号	名称	监侧 区地	施安装位置	日幼血侧以爬的女教、维护寺相大官连安水	否联网	方法及个数	频次	方法
		рН			1、制定在线分析仪设备日常运行检查和数据记录、故	是			
		COD_{Cr}			障记录等;	是			
		氨氮	口毛勃	厂区废水总	2、安排专人负责设备的巡回检查;	是			
1	DW001 总氮 □手动 □厂区废水总 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		3、厂区环保管理部门每月对在线监测设备运行、管理	是	/	/	/		
				情况、制度执行情况进行检查;					
		总磷			4、不得随意闲置、拆除、破坏以及擅自改动自动监控	是			
					系统参数和数据等行为。				

表 5.2-18 地表水环境影响评价自查表

_		表 5.2-18	地表水坏境影	THUNDEA				
工	作内容		自查项目					
	影响类型	7.	k污染影响型 ☑ ;	水文要素影响	向型□			
	水环境保	饮用水水源保护区□;	饮用水取水□;	涉水的自然保	 R护区 _□ ;	重要湿地□;重		
	护目标	点保护与珍惜水生生						
影响	27 H 7/1	越冬场和洄游通道、		1				
识别	影响途径	水污染影	响型	水	文要素影	响型		
	AV 1472 IL	直接排放□;间接排		水温□;	径流□;	水域面积□		
		持久性污染物□; 有詞		水温□:水位	(水深)	□: 流速□: 流量		
	影响因子	非持久性污染物☑; pH 值□; 热污染		/ /4 / /	□; 其他	, <u> </u>		
		□; 富营养化□						
 评	价等级	水污染影			文要素影			
		一级口; 二级口; 三级		一级口		; 三级□		
		调查项	目	18.20.1	数据来	<u> </u>		
	区域污染	 已建□; 在建□; 拟建	拟替代的污染			环保验收□; 既		
	源	□; 其他-□	源□			; 入河排放口数		
				据□; 其他□				
	受影响水	调查时			数据来			
	体水环境	丰水期□; 平水期□;	枯水期□; 冰封	生态环境保护	户主管部	门口;补充监测		
	质量	期□	V禾_ ▽▽▽□		☑; 其他			
	区域水资	春季□;夏季□;利	八字□; 令字□					
现状	源开发利	 *	⊐;开发量 40%↓	以下□. 开发量	· 40%DJ	Ь-n		
调查	用状况	水川及[コ, /1 久里 T U/05	∽ 」□; /				
	7,40,00	调查时	 期	数据来源				
	水文情势	丰水期□; 平水期□;	枯水期 ☑ ;冰封	しょく マトン・ケケ ショ	1.5 2.1	→ 11E2001 == ++ 13		
	调查	期□		水行政王管部		充监测☑; 其他		
		春季□;夏季□; 積	伙季□;冬季□					
		监测时	期	监测因子	监测	断面或点位		
	 补充监测	丰水期口; 平水期口;	枯水期□;冰封		监测账章			
		期□		()		明 以 点 位 下 数 () ・		
		春季☑;夏季□; 種				, 		
	评价范围	河流:长度(() km; 湖库、			() km ²		
	评价因子			5、总氮、氨氮				
			河口:Ⅰ类□;Ⅱ					
现状	评价标准	近岸海域	:第一类□;第		約□;第四]类□		
评价				价标准 (V)				
	评价时期		水期□; 平水期□					
				; 秋季□; 冬季□				
	评价结论	水环境功能区或水功			、灰丛怀	达标区□ 不进标区□		
	пинк	上	l□: 达标□; 不ì			不达标区☑		

工	作内容		自查项目					
		水环境控制单元或断面水质流	达标状况□: 达标□; 不	达标☑				
		水环境保护目标质量状	况□: 达标□; 不达标□					
		对照断面、控制断面等代表性	生断面的水质状况:达林	示□;不				
		达村	示☑					
		底泥污	染评价□					
		水资源与开发利用程	度及其水文情势评价□					
		水环境质量	量回顾评价□					
		流域(区域)水资源(包括方	水能资源)与开发利用.	总体状				
		况、生态流量管理要求与现料		占用水				
			兄与河湖演变状况□					
	预测范围	河流: 长度() km;	湖库、河口及近岸海域	i: 面积()km ²				
	预测因子		(/)					
		丰水期□; ≦	平水期□;枯水期□;冰	封期□				
	预测时期	春季□;	夏季□; 秋季□; 冬季					
影响			设计水文条件□					
预测		建设期口;	生产运行期口; 服务期沿	满 后□				
37,013	预测情景	正常工况口; 非正常工况口						
		污染:	控制和减缓措施方案□					
		区(流)域环境质量改善目标要求情景□						
	预测方法		解□;解析解□;其他□					
		导见	則推荐模式□; 其他□					
	水污染控							
	制和水环							
	境影响减	区(流)域水环境中质量改善目标☑;替代削减源□						
	缓措施有							
	效性评价							
		排放口混合区外满足水环境管理要求口						
			水环境功能区或水功能区、近岸海域环境功能区水质达标□					
			R护目标水域水环境质量					
E1		, , , , , ,	空制单元或断面水质达林 1988年 - 新月年	•				
影响		满足重点水污染物排放总量打						
评价	水环境影		病足等量或减量替代要3					
	响评价		域水环境质量改善目標					
		水文要素影响型建设项目同时应包括水文情势变化评价、主要水文特征值						
			个、生态流量符合性评位 - 新島水林、排放口的					
			、近岸小域广排成口的。 置的环境合理性评价☑	连 区 坝 日 , 丛 包 拍 排				
				建和环培准 》 法许德理				
		满足生态保护红线、水环境质	贝里底线、	汉州州児田八 佰早百य				
	污染源排	污染物名称	要求 と 排放量/(t/a)	排放浓度/(mg/L)				
	放量核算	悬浮物	0.656	10				
	外王以开	小小儿	0.030	10				

工	作内容			自查项	目				
		E	1磷	0.0	026	0.4			
		CC	$\mathrm{DD}_{\mathrm{Cr}}$	2.6	525	40			
		É	氮	0.1	130	2.0			
		复	扊	0.1	130	2.0			
		В	OD_5	0.6	656	10			
	 替代源排	污染源名称	排污许可证编	污染物名	排放量	排放浓度/(mg/L)			
	放情况	17******	号	称	/(t/a)	JAF/JXYK/X/(IIIg/L)			
	从间见	()	()	()	()	()			
	生态流量	生态流量:	生态流量: 一般水期() m³/s; 鱼类繁殖期() m³/s; 其他() m³/s						
	确定	生态水位: 一般水期() m; 鱼类繁殖期() m; 其他() m							
	 环保措施	污水处理设	施図;水文减缓	受设施□;生	态流量保障	章设施□;区域削减□;			
	公山(火)日)原		依托其他工程措施□;其他□						
			Ð	「境质量		污染源			
防治		监测方式	毛勃团。(自动□; 无监	大河山二	手动□;自动☑;无监测			
措施	监测计划	皿侧刀八	丁纫区; [∃491□; 儿面	1.7火リロ				
1日 小匠		监测点位		()		(总排口)			
		监测因子		()		()			
	污染物排								
	放清单								
评价结论 可以接受☑;不可以接受□									
	注:"□"	为勾选项,同	可√;"()"为内	内容填写项;	"备注"为	其他补充内容。			

5.2.3 地下水环境影响预测与评价

5.2.3.1 区域水文地质条件

- (1) 地质条件
- 1) 地层

祁县境内出露地层有:三叠系、侏罗系、第三系及第四系地层。由老到新 简述如下:

①三叠系(T)

主要分布于县域南部山区,岩性为砂岩和薄层页岩、泥岩,底部泥质页岩较发育,砂岩裂隙发育,总厚度 1549~2075m。

I.下统(T1)

刘家沟组(T1L)与和尚沟组(T1h)

厚度 580~836m,底层以一套校单一的浅紫色、灰紫色、紫红色中层夹薄层细粒长石砂岩为主。间夹不稳定的紫红色、砖红色粉细砂岩、砂质页岩、泥岩等组成。砂岩含磁铁矿条纹、条带,具有发育的交错层理、微细层理、波浪状。

II.中统(T2)

二马营组(T2er)与铜川组(T2t)

厚度 916~1160m,由灰绿、灰白、黄绿和浅灰红色中细粒长石砂岩及暗红色砂质泥岩、泥砾岩、泥岩和灰、灰紫色、灰绿色砂质页岩组成。属陆相沉积,含植物化石和脊椎动物化石。本组地层岩性、厚度变化大,且规律不明显,泥岩带分叉尖灭,互为相变。

Ⅲ.上统(T3)

延长组(T3y)本组厚度 53.7~79.5m,地层岩性主要以灰黄、浅肉红色、灰黄绿色厚层粗中粒长石砂岩为主,夹有红色砂质泥岩及灰色页岩。局部含有砂岩球。

②侏罗系(J)

I.中统(J2)

黑峰组(J2h)本组厚度大于 78m, 该地层仅局部出露, 多在山顶成帽状。

主要分布于四县垴和洞顶山一带,地层底部为灰黄色砾岩、石英砂岩、石英岩夹深灰色变质岩;上部以灰绿、黄绿、灰黄砂质页岩为主,夹石英、长石砂岩薄层。其中,灰绿色页岩十分发育,具微细层理。

本组地层与下伏三叠系地层呈平行不整合关系接触,与上伏第三系地层呈角度不整合关系接触。

③第三系(N)

本区仅第三系上新统零星出露于山前沟谷内,以王家岭一带较多,岩性为紫红、棕红色粉土、粉质粘土及浅黄色粉质粘土。地层受后期构造影响,呈倾斜状,似为冰水沉积物。

④第四系(O)

I.下更新统泥河湾组(Q1)

堆积物成因为河湖相沉积。岩性为灰色、灰绿色、兰灰色粉土、粉质粘土, 夹有变化较大的粉细砂及中砂, 山前一带岩性颗粒粗, 顶板埋深一般在 100~130m 左右。盆地内分布普遍,与上覆和下伏地层为连续沉积,是一套弱氧化环境交错的沉积物,冲积平原为弱还原环境为主的沉积物,所含砂层较纯净。与下伏第三系上新统为连续沉积,界限不易划分,厚约 100~200m。

Ⅱ.中更新统(Q2)

黄土丘陵区为坡~洪积成因类型,岩性呈浅红色含沙量较大的粉土、粉质粘土。分布于沟谷两侧的陡坡上,厚约 20~30m。

盆地内为冲、洪、湖积成因类型,由昌源河、伏溪河、乌马河及边山片流 形成。近山前和古河道部分颗粒较粗,厚度较大。在垂直方向上有由细变粗再 到细的特点。主要岩性为浅黄、稍带黄绿色的粉土、粉质粘土互层,夹粉细砂 层,分布于该时代地层的中部和底部,埋深 40~120m 左右。

Ⅲ.上更新统(Q3)

上更新统黄土广泛分布于丘陵区及基岩山区的斜坡及沟谷两侧。岩性主要为浅黄色粉质粘土,含少量钙质结核及透镜体状的砂砾石层,垂直节理发育,常形成峻峭的陡壁。厚薄不一,一般在 3~10m。多为洪积坡积成因。盆地内厚度 50m 左右。岩性主要为冲洪积成因的浅黄色粉质粘土、粉土互层,夹粉细砂,

厚度不稳定,近山前及古河道部位颗粒较粗,厚度较大,垂直方向上上粗下细。

汾河地段为汾河沉积物及侧向河流冲洪积物交错沉积,岩性颗粒细,其特征与洪积成因相差不大

IV.全新统(Q4)

分布于山前、倾斜平原上部河谷阶地,由冲洪积、洪积层组成。岩性为灰白色中细砂夹砂砾石层和黄色粉质粘土、粉土,厚度 10~17m。

2) 地质构造

祁县境内构造上处于太行山隆起带和吕梁山隆起带间挽近期成生的"多"字 形构造汾河河槽地带,受燕山运动和新构造运动的影响,表现为山区受断裂作 用抬升,盆地相对沉降。区内构造以 NE 或 NEE 两组断裂为控制性构造,主要 有太谷~祁县东部边山断裂、六台山断裂等,以上构造对本区第四系松散层沉 积、地下水的形成、富集和补、径、排条件产生一定的控制作用。

(2) 区域水文地质条件

1)含水岩系的划分

根据地下水含水介质、赋存条件、水动力特征,祁县境内含水岩系可划分为碎屑岩类裂隙水含水岩系和松散岩类孔隙水含水岩系。

2) 各含水岩系的水文地质特征

①碎屑类裂隙水含水岩系

分布于境内东南部基岩山区,由三叠系砂页岩组成,地下水主要赋存于岩层裂隙中,裂隙发育方向以 NE47°及 NW305°为主。由于岩层中裂隙的发育程度不均一,使之富水性有所差异,其中以三叠系中、上统中厚层状砂岩较为富水,可分为风化孔隙裂隙潜水和层间裂隙承压水。

风化裂隙潜水赋存于风化裂隙带中,深度一般不超过 30m,地下水受岩性、构造、地貌等条件的限制,富水性变化很大。多以泉水形式出露于沟谷中及岩层接触带上,处于构造破碎带及低洼处,泉水流量 3~7L/s,一般流量仅为 0.3~1.5L/s。昌源河东岸的富水性明显强于西岸。层间裂隙承压水赋存于侵蚀基准面以下及河床下的第一个隔水层以下的岩层中,富水的强弱取决于岩石的裂隙、断层、破碎带和补给条件,而本区岩石裂隙比较发育,所以本区裂隙承压水富

水性较好。如盘陀村的自流井,该井井深 200m 左右,水位高出地面 $3\sim13m$,涌水量达 $1000\sim1500m^3/d$,而其它地段类似井的静水位埋深 $20\sim40m$,单井涌水量 $300\sim600m^3/d$ 。

②松散岩类孔隙水含水岩系

根据地貌单元可分为: 黄土台垣区孔隙水含水岩组和洪积倾斜平原区孔隙水含水岩组。

I.黄土台垣区孔隙水含水岩组

分布于山前地带的任村、王贤存及涧村、峪口一带,含水层为第四系更新统粉细砂夹中砂层为主。地下水水位埋深一般在 35~60m 之间,单井涌水量在 500~1000m³/d 之间,水化学类型为 HCO₃Ca·Mg 型。

Ⅱ.洪积倾斜平原区孔隙水含水岩组

该含水岩组广泛分布于区内,含水层由第四系更新统洪积、冲湖积砂砾石中砂及细砂层组成,厚度在 40~70m 之间。岩性以中细砂为主,古河道部位颗粒较粗,有中粗砂含砾石层,其它部位变细。水位埋深在 10~40m 之间(井深为 100~180m),单井涌水量为 700~1600m³/d,富水性中等。

区内最大的洪积扇——昌源河洪积扇沉积规律:具有冲洪积物沉积的特点, 地层由上到下颗粒由粗变细,含水层的厚度、粒度、富水性、水位埋深,从扇 首到前缘、轴部到扇间逐渐变薄、变细、变差、变浅,地下水赋存条件相应变 差。

含水层岩性主要为中、细砂,其次为细粉砂及粗砂、砂砾石,在水平分布上呈上部粗下部细,上部厚下部薄,古河道部位上细下粗,其它地段相反。昌源河地表水对本区地下水的补给起主要的控制作用。洪积扇上部的涧壑、下古县、大韩等地含水层岩性以砂砾石及粗砂为主。井深一般在150~200m之间,单井涌水量大于1000m³/d;中部西六支、王村一带,含水层岩性以中细砂为主,单井涌水量达1000m³/d左右;下部丰泽、李村一带,含水层以细粉砂为主,富水性稍差,单井涌水量在500~1000m³/d之间。伏溪河洪积扇分布于东观镇、峪口乡一带,含水层岩性以中细砂、砾石、细砂为主,自上而下颗粒逐渐变细,埋藏深度一般在20~40m、65~85m、170~190m 三段之间,累积厚度一般

在 $20\sim35$ m 之间,单井涌水量在 $500\sim1000$ m³/d 之间。

昌源河洪积扇与伏溪河洪积扇在下游汇合,其扇间地带含水层厚度变薄, 一般为10~20m,单井涌水量也不大。

- 3) 地下水的补给、径流、排泄条件
- ①碎屑岩裂隙水含水岩系

该含水岩系地下水补给来源主要为大气降雨入渗及地表水的沿途渗漏。主要形式为基岩裸露区降水直接通过节理裂隙及风化带入渗转化为地下水,而在低洼、沟谷地段,黄土覆盖厚度小或薄的地区,降水则通过黄土渗透间接补给裂隙水,沟谷地段也接受松散层潜水的补给;径流方向为沿裂隙发育方向、岩层产状径流;在基岩山区,地形较陡,地下水径流畅通,在侵蚀基准面以上,风化裂隙水的排泄以散泉形式排泄于沟谷等,层间裂隙水沿构造断裂或节理发育方向通过神循环向山前运移,通过边山断裂带补给盆地第四系松散层孔隙水。

②松散岩类孔隙水含水岩系

第四系松散岩类地下水补给来源主要为大气降水、山区地下水侧向径流补给和灌溉回渗、地表水洪水期的入渗补给等;径流方向为由东南向西北径流;排泄方式主要是人工开采、蒸发和向下游侧向径流排泄。

4) 地下水水化学特征

基岩裂隙水因补给条件较好,径流途径短,且径流畅通,水循环快,地下水与围岩淋溶作用为主,地下水水化学类型单一,成因简单,以 HCO³-Ca·Mg型水为主,矿化度小于 0.5g/l,硬度(以 CaCO³ 计)在 179mg/L 左右,各种离子含量均比较低。

松散层孔隙水地下水水化学特征随着地下水的运移呈规律性变化,从山前到平原地下水水化学类型为HCO₃Ca·Mg型或HCO₃-Ca·Mg·Na型,pH值为7.8~7.9,矿化度由小变大,为0.51~0.56g/L,局部大于1g/L; F⁻离子为0.6~0.8mg/L; 硬度(以CaCO₃计)变化范围在178.6~360.0mg/L之间。水质的规律性变化是由于地下水从山前到平原运移的过程中,不断与周围围岩发生离子交换造成的。

5) 地下水水位动态

区域地下水水位动态直接受天然因素和人为因素影响。山区基岩裂隙水随

降雨量变化而呈周期性变化,在枯水期,地下水水位下降,泉水减少或干枯,相反则上升或增多。

松散层孔隙水地下水水位动态特征为: 在补给径流条件良好的近河地带,汛期河水下渗补给, 地下水呈上升趋势, 年内水位变化小于 1.0m, 过程曲线属 平稳性动态; 区内洪积扇大部分地区属开采中等、补给条件较好的倾斜平原井河两灌区, 潜水水位埋深 10~15m 左右, 受开采、降水、地表水、灌溉等因素的影响, 年内水位呈波状起伏, 但变化幅度不大, 过程曲线属缓变型动态。据 地下水动态长观孔资料: 河湾村、大韩村, 位于昌源河古河道上, 地下水水位 年降幅 0.29m, 为缓变型过程曲线; 下闫灿、元台沟一带, 黄土台垣区与洪积扇交界处, 地下水水位平均年降幅为 0.19~0.21m, 动态基本稳定; 王村、西六支一带由于集中开采已形成了地下水水位降落漏斗, 平均年降幅 0.61m。

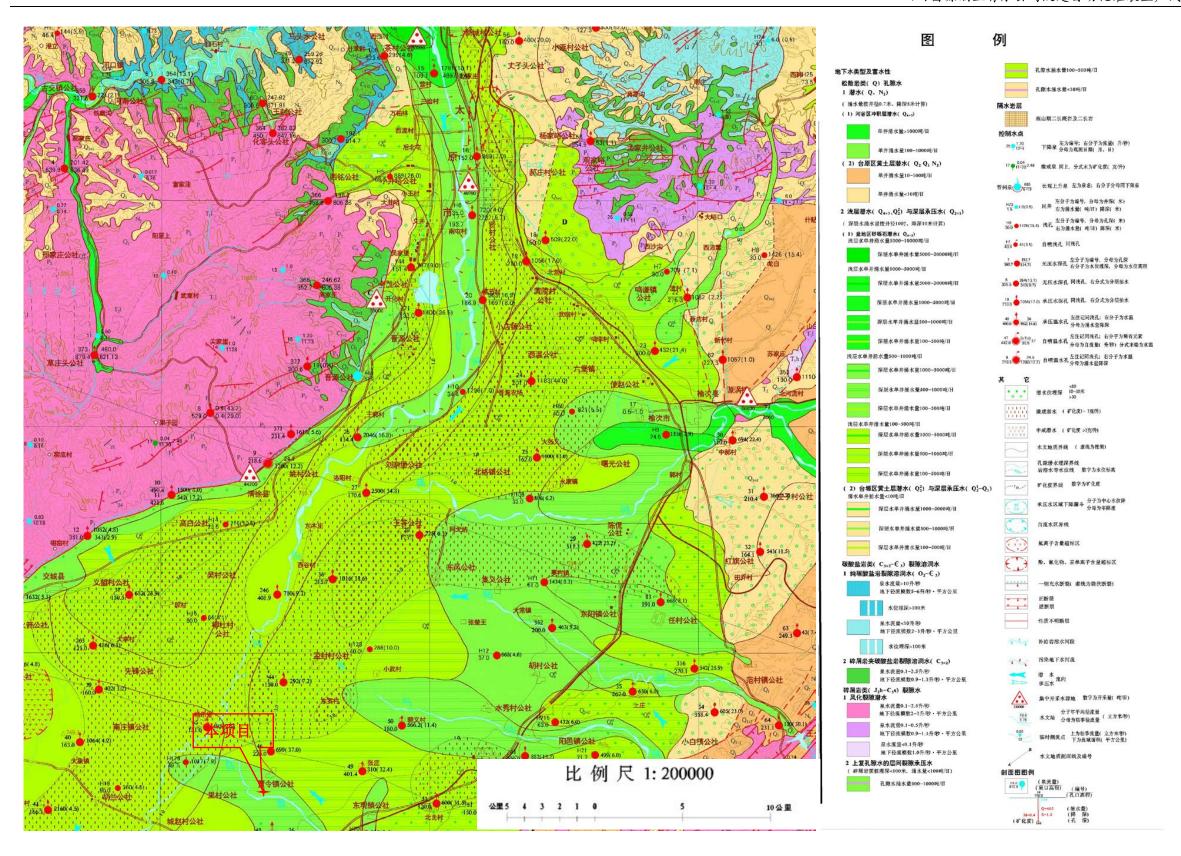


图 5.2-1 区域水文地质条件

5.2.3.2 评价区水文地质条件

(1) 地质条件

本项目区揭露的地层主要为第四系全新统(Q4),主要岩性为: 0~0.5m 为种植土、0.5~18m 为亚砂土、18~26m 为粘土、26~33m 为粉细砂、33~38m 为亚砂土、38~44.5m 为粉细砂、44.5~51m 为粘土、51m~66m 为细砂、66~71m 为亚砂土、71~92m 为粉细砂、92~152m 为粘土。项目区地层为地表岩石风化后或溪流冲积形成的坡积、残积及冲积碎石、砂土、亚砂土等组成,厚度变化大,依地形而异,该层渗水性含水性好,由于大气降水和地表水补给条件好,为地下水较丰富的孔隙潜水含水层。

(2) 水文地质条件

本项目区主要为倾斜平原孔隙含水岩组,分布于由昌源河和伏西河洪流长 期沉积作用而形成的倾斜平原上。它的前缘延伸到张堡、长头、贾令、城赵庄、 朴村一线,占据祁县境内整个平川面积的 2/3。倾斜平原孔隙含水岩组含水层埋 深在 100-300m, 在山前倾斜平原的河湖相沉积物内, 夹有厚达 200m 左右的中 细砂层,砂层比较纯净。该水层延续的范围可达东高堡、西高堡、秦村、朴村 线,一般含水层厚度在 30~50m 左右。埋深在 40~100m 和小于 40m 的含水层, 基本上相当于中、上更新世时期,昌源河和伏西河的古河道表现得比较明显。 昌源河古河道一支由下古县、张名、韩家庄到城赵镇的西白圭、西韩村汇人汾 河:另一支沿现代昌源河偏西,经河湾、南社、高村、沙堡,最后汇入现代昌 源河,这一带的含水层厚度一般在 15~20m 之间。伏西河的古河道也表现为两 支,一支是由北团柏、官厂、东观至瓦屋村;另一支由南团柏、罗家庄至东六 支入昌源河。这一带的含水层厚度一般在 15~20m 之间,最厚达 30 余 m。在古 县一带,含水层最厚,其岩性为砂砾石、粗砂和粉细砂,部分有砂质胶结现象。 县城东北部的王村、永兴庄和西边的西关以及常家堡地段,有基底局部的隆起 带,构成了整体走向为北东一南西向的马鞍形状,其凹部埋藏最浅的为 142~148.7m。其岩性为中生代三迭纪砂岩,并夹有少量的页岩。常家堡处的局 部隆起为火山岩系,基岩的顶部有巨厚的砂砾石层,造成了基岩承压水和上部 松散层承压水之间的水力联系,两者水头表现很相近。

5.2.3.3 厂区水文地质条件

(1) 地质条件

根据厂区内地质勘察报告,场地地貌单元为冲洪积平原。

场地地基土自上而下可划分为9层,现依层序分述如下:

第①层:杂填土(Q42ml):杂色,以粉土为主,混有砖块、灰渣、植物根系、粉砂等,结构松散,呈欠固结状态。

第②层粉土(Qyatpl):褐黄色,稍密,稍湿,含云母、氧化物、植物根系等,摇振反应中等,无光泽反应,干强度及韧性低。该层局部夹有薄层粉砂。

第③层粉砂(Q4al+pl):褐黄色,主要矿物成分为石英,局部含少量粉土、粉质粘土,稍湿,稍密状态,颗粒均匀,级配不良。该层局部夹有薄层粉土。

第④层粉土(Q4al+pl): 褐黄色,稍密,稍湿,含云母、氧化物等,摇振反应中等,无光泽反应,干强度及韧性低。该层局部夹有薄层粉砂。

第⑤层粉细砂(Q4al+pl): 褐黄色,主要矿物成分为石英,局部含少量粉土、粉质粘土,稍湿,稍密状态,颗粒均匀,级配不良。该层局部夹有薄层粉土。

第⑥层粉土(Qqal + pl): 褐黄色,稍密,湿,含云母、氧化物等,摇振 反应中等,无光泽反应,干强度及韧性低。该层局部夹有薄层粉砂。

第⑦层粉砂(Q4ai+pl): 褐黄色,主要矿物成分为石英,局部含少量粉土,稍湿,稍密状态,颗粒均匀,级配不良。

第⑧层粉土(Q4lai+pl): 褐黄色,稍密~中密,湿,含云母、氧化物等, 摇振反应中等,无光泽反应,干强度及韧性低。该层局部夹有薄层粉砂。

第⑨层粉砂(Q4al+ pl): 褐黄色,主要矿物成分为石英,局部含少量粉土,稍湿,中密状态,颗粒均匀,级配不良。场地钻孔柱状图见下图。

综上所述, 厂区内包气带防污性能一般。

(2) 水文地质条件

厂址区水文地质类型属于孔隙地下水区。主要接受大气降水、河流、山前侧向补给、大中型灌区渠道渗漏补给、大中型灌区、小型水利工程田间灌溉入 渗补给、小型水利灌溉入渗补给及井灌回归补给。排泄以人工开采为主。

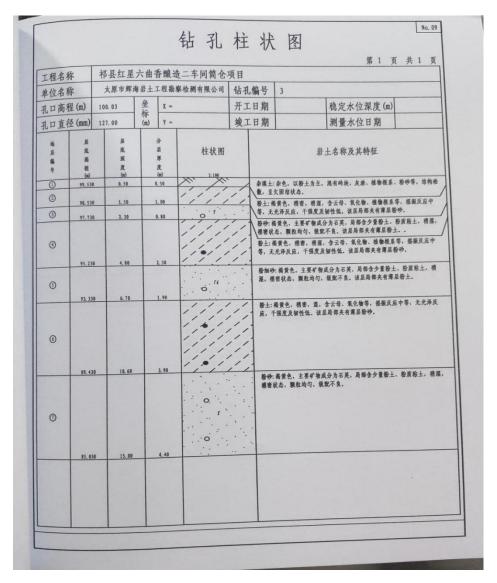
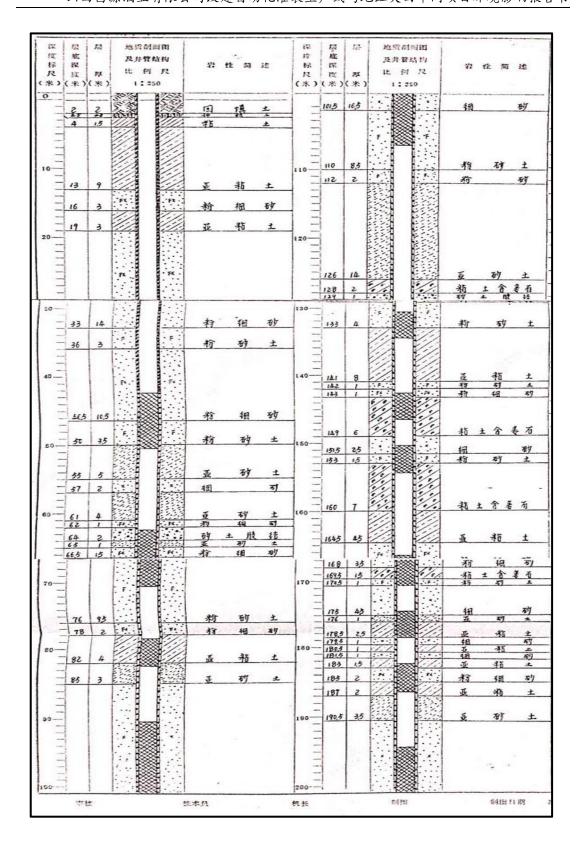



图 5.2-2 场地钻孔柱状图

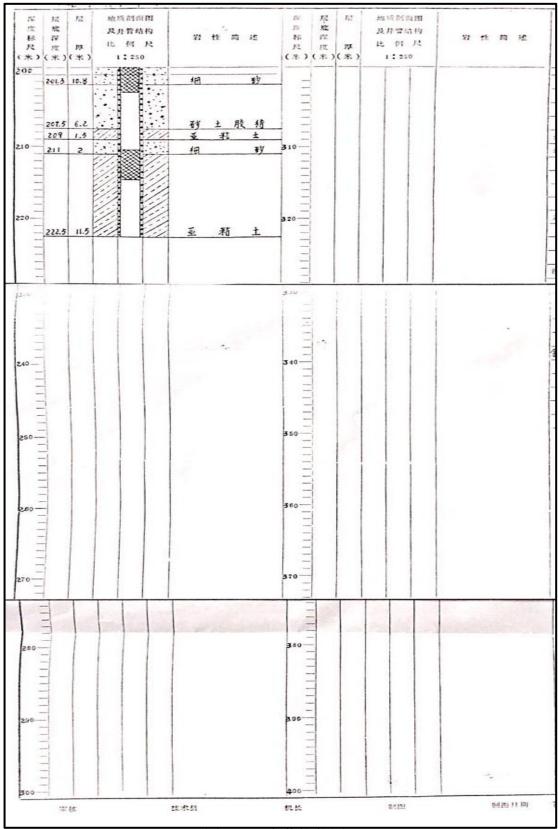


图 5.2-3 水井柱状图

5.2.3.4 地下水保护目标

(1) 水源地

祁县城市集中式饮用水水源地共有三处:河湾水源地、西洛阳水源地和子 洪水库;乡镇集中式饮用水水源地有一处:峪口集中供水水源;项目所在地贾 令镇无集中供水水源。

项目不在上述水源地保护范围内,距离项目最近的水源地为 7.5km 处的河湾水源地,与本项目间基本没有直接地下水水力联系,本项目正常生产废水经处理后排放不会对该水源地造成影响。

(2) 村庄分散式水井

本次评价范围内的地下水保护目标主要为以下村庄分散式饮用水井。水井概况见下表。

水井编号	供水 村庄	方位	距离(m)	井深(m)	水位埋深	取水类型	功能	环境功能		
1#	厂区 内	/	/	190	70	倾斜平原 孔隙水	饮用			
2#	贾令 镇	NE	100	210	50	倾斜平原 孔隙水	农田灌溉			
3#	贾令 镇	NW	480	220	60	倾斜平原 孔隙水	农田 灌溉	《地下水质量标准》 (GB/T 14848-2017)		
4#	贾令 村	NE	2100	210	50	倾斜平原 孔隙水	饮用	- III 类水质标准		
5#	灌溉 水井	NW	3430	200	60	倾斜平原 孔隙水	农田 灌溉			

表 5.2-19 评价区村庄水井

5.2.3.5 地下水环境影响分析

(1) 地下水水质预测

本项目地下水环境预测评价等级为三级,采用解析法进行预测。根据导则要求,结合本项目的工程特征与环境特征,应预测建设项目对地下水水质产生的直接影响,重点预测对地下水环境保护目标的影响。因此,本次评价只对第四系松散岩类地下水含水层进行预测分析与评价。

a.污染源

生产废水经收集后一起排入厂区污水处理站进行处理,根据《酿造工业废

水治理工程技术规范》(HJ575-2010),本项目处理工艺选用"格栅间+调节池+气浮池+IC 厌氧反应器+AO/AO/AO+MBR 膜+混凝沉淀+过滤+消毒"。经处理后废水水质满足《污水排入城镇下水道水质标准》(GB/T 31962-2015)A 级标准限值,本项目出水水质见下表。废水经处理后通过污水管网进入祁县鸿宇市政污水处理有限公司处理。

		农 5.2 20									
废水量		65637m³/a									
水质指标	рН	COD	BOD ₅	SS	NH ₃ -N	TP	TN				
处理后浓度 (mg/L)	6-9	105	105	7.2	0.091	0.26	62.8				
排放标准 (mg/L)	6-9	500	350	400	45	8	70				
达标情况	达标	达标	达标	达标	达标	达标	达标				

表 5.2-20 本项目处理后出水水质

b.预测因子的选取

根据本项目污水处理方案可知,生产废水与生活废水全部集中在污水处理站,据污水处理站进出口水质情况,NH₃-N 作为主要污染源且作为地下水质量标准的指标之一,可作为本项目生产废水与生活废水的特征因子。同时,NH₃-N 在处理前后水质虽然达标,但是难以兼顾《地下水质量标准》(GB/T14848-2017)III 类水质要求,一旦出现污水泄露,对地下水将产生一定的污染风险。因此,本次评价以超标因子为选取依据,确定预测因子为 NH₃-N 为预测因子,取进口水质最大值 100mg/L。

c.情景设置

根据《环境影响评价技术导则地下水环境》(HJ610-2016) 9.4 情景设置: 一般情况下,建设项目须对正常工况和非正常工况的情景分别进行预测。

本项目按照《地下工程防水技术规范》(GB50108-2008)规定: 坑、池、 宜用防水混凝土整体浇筑,内设其他防水层,本次评价要求防水层防渗等级为 一级,不允许渗漏。因此,不进行正常工况情景下的预测。

非正常工况下,采用允许渗漏量每天 2L/m² 的 100 倍作为非正常工况情景下的最大渗漏量,200L/m²。污水处理站调节水池面积 5m×5m,概化为点污染源,渗漏量为每天 5m³/d。

d.预测公式

池底渗漏较难及时发现,若发现后采取措施时间也较长,故污水污染源可概化为点源,注入规律为连续注入,采用一维稳定流动二维水动力弥散模型,公式如下:

$$C(x, y, t) = \frac{m_M / M}{4\pi n t \sqrt{D_L D_T}} e^{-\left[\frac{(x - ut)^2}{4D_L t} + \frac{y^2}{4D_T t}\right]}$$

式中:

x, y-计算点处的位置坐标;

t—时间, d:

C(x, y, t) —t 时刻点 x, y 处的示踪剂浓度, g/L;

M —承压含水层的厚度, m;

™ ~ 长度为 M 的线源瞬时注入的示踪剂质量, kg;

u -- 水流速度, m/d;

 n_a —有效孔隙度,无量纲;

 D_1 —纵向弥散系数, m^2/d ;

 D_r —横向 y 方向的弥散系数, m^2/d ;

π-圆周率。

e.预测时段

本项目对运营期进行地下水水质预测,预测时段选取 100 天、1000 天两个时间段。

(2) 模拟预测结果及分析

按照上述方法及参数对预测情景进行预测,预测结果如下表所示。

表 5.2-21 NH₃-N 泄漏 100 天迁移距离及浓度 (mg/L)

								0			
Y	-10	-8	-6	-4	-2	0	2	4	6	8	10
-30	1.73E-01	2.14E-01	2.56E-01	2.94E-01	3.22E-01	3.33E-01	3.22E-01	2.94E-01	2.56E-01	2.14E-01	1.73E-01
0	2.33E-01	3.16E-01	4.33E-01	6.08E-01	9.23E-01	2.65E+00	9.23E-01	6.08E-01	4.33E-01	3.16E-01	2.33E-01
50	3.77E-02	4.43E-02	5.05E-02	5.56E-02	5.90E-02	6.02E-02	5.90E-02	5.56E-02	5.05E-02	4.43E-02	3.77E-02
100	1.55E-03	1.74E-03	1.91E-03	2.04E-03	2.12E-03	2.15E-03	2.12E-03	2.04E-03	1.91E-03	1.74E-03	1.55E-03
200	1.07E-07	1.18E-07	1.28E-07	1.35E-07	1.39E-07	1.41E-07	1.39E-07	1.35E-07	1.28E-07	1.18E-07	1.07E-07
500	1.58E-32	1.74E-32	1.87E-32	1.97E-32	2.03E-32	2.05E-32	2.03E-32	1.97E-32	1.87E-32	1.74E-32	1.58E-32
1000	9.09E-45	1.22E-44	1.63E-44	2.36E-44	3.69E-44	4.56E-44	3.69E-44	2.36E-44	1.63E-44	1.22E-44	9.09E-45
2000	9.09E-45	1.22E-44	1.63E-44	2.36E-44	3.69E-44	4.56E-44	3.69E-44	2.36E-44	1.63E-44	1.22E-44	9.09E-45
3000	9.09E-45	1.22E-44	1.63E-44	2.36E-44	3.69E-44	4.56E-44	3.69E-44	2.36E-44	1.63E-44	1.22E-44	9.09E-45

表 5.2-22 NH₃-N 泄漏 1000 天迁移距离及浓度(mg/L)

Y	-10	-8	-6	-4	-2	0	2	4	6	8	10
-30	5.97E-01	6.54E-01	7.09E-01	7.58E-01	7.91E-01	8.04E-01	7.91E-01	7.58E-01	7.09E-01	6.54E-01	5.97E-01
0	5.87E-01	6.84E-01	8.02E-01	9.95E-01	1.30E+00	2.51E+00	1.30E+00	9.95E-01	8.02E-01	6.84E-01	5.87E-01
50	2.11E-01	2.23E-01	2.34E-01	2.43E-01	2.49E-01	2.51E-01	2.49E-01	2.43E-01	2.34E-01	2.23E-01	2.11E-01
100	5.95E-02	6.13E-02	6.27E-02	6.38E-02	6.44E-02	6.46E-02	6.44E-02	6.38E-02	6.27E-02	6.13E-02	5.95E-02
200	4.37E-03	4.45E-03	4.50E-03	4.54E-03	4.57E-03	4.57E-03	4.57E-03	4.54E-03	4.50E-03	4.45E-03	4.37E-03
500	2.82E-07	2.85E-07	2.87E-07	2.89E-07	2.90E-07	2.90E-07	2.90E-07	2.89E-07	2.87E-07	2.85E-07	2.82E-07
1000	5.12E-18	5.17E-18	5.20E-18	5.23E-18	5.25E-18	5.25E-18	5.25E-18	5.23E-18	5.20E-18	5.17E-18	5.12E-18
2000	2.86E-44	3.30E-44	3.76E-44	4.17E-44	4.46E-44	4.56E-44	4.46E-44	4.17E-44	3.76E-44	3.30E-44	2.86E-44
3000	2.86E-44	3.30E-44	3.76E-44	4.17E-44	4.46E-44	4.56E-44	4.46E-44	4.17E-44	3.76E-44	3.30E-44	2.86E-44

根据计算结果,非正常工况下调节水池渗滤液发生泄漏 100 天后,超标距离为下游 19m,预测范围内超标面积为 272m²; 影响距离为下游 93m,预测范围内影响面积为 2108m²; 发生泄漏 1000 天后,超标距离为下游 75m,预测范围内超标面积为 1156m²,影响距离为下游 390m,预测范围内影响面积为 3848m²,距离本项目最近的下游饮用水井为 3.0km 的前营村水井,因此本项目基本不会对下游饮用水井产生影响。

本项目利用厂区下游西北侧 480m 现有水井作为污染扩散监测井,监测频率为每年两次,因此在采取该措施的前提下,调节水池若发生泄漏,可及时发现并采取补救措施,阻止污染物继续渗漏扩散。

5.2.3.6 地下水环境保护措施与对策

按照《中华人民共和国水污染防治法》和《中华人民共和国环境影响评价法》的相关规定,按照"源头控制、分区防控、污染监控、应急响应",重点突出饮用水水质安全的原则。

本项目污染源头控制主要选择先进、可靠的工艺技术和较为清洁的原辅材料,对生产过程产生的废物进行治理或者回用,以尽可能从源头上减少污染物排放。在项目运营过程加强生产管理,防止生产过程中跑、冒、滴、漏造成的废水四处漫延渗漏地下,对管道、设备、污水储存及处理构筑物进行定期检漏监测及检修,强化各相关工程的转弯、承插、对接等处的检修,将污染物跑冒滴漏降到最低限度。

(1) 分区防控

根据《环境影响评价技术导则-地下水环境》 (HJ 610-2016) 的划分原则,依据原料、辅料、产品的生产输送、储存、污水处理等环节,结合本项目总平面布置情况,本项目厂区分为重点防渗区、一般防渗区和简单防渗区。

① 重点防渗区

重点防渗区指污染地下水环境的物料或污染物泄漏后不易及时发现和处理 的区域或部位。本项目重点防渗区主要为污水处理设施各池体、污水收集管道、 事故水池、初期雨水收集池和危废暂存间。

②一般防渗区

一般防渗区指裸露于地面的生产功能单元,污染地下水环境的物料或污染物泄漏后,可及时发现和处理的区域和部位。本项目一般防渗区主要为酒糟暂存库、生产车间及原料、产品库。

③简单防渗区

简单防渗区指没有物料或泄漏后不会对地下水环境造成污染的区域或部位。除上述两类防渗区之外的厂区其他部分,按相关工程规范进行一般地面硬化即可。

			(5.2 25		
序号	防渗 分区	区域	防渗措施	防渗技术要求	备注
1	重点防渗区	污水处理设施 各池体、污水 收集管道、事 故水池、初期 雨水收集池 危废暂存间	防渗钢筋混凝土,池内表面 涂刷水泥基渗透结晶型防渗 涂料,渗透系数 ≤1.0×10 ⁻¹¹ cm/s 防渗混凝土+2mmHDPE 膜强 化 防 渗 , 渗 透 系 数	等效黏土防渗层 Mb≥6.0m, K≤1×10 ⁻⁷ cm/s	已建,满足 防渗技术要 求,事故水 池、初期雨 水收集池新 建
	一般	酒糟暂存库	≤1.0×10 ⁻¹⁰ cm/s 黏土基础防渗+混凝土地面, 滲透系数≤1.0×10 ⁻⁷ cm/s	等效黏土防渗层 Mb≥1.5m, K≤1×10 ⁻⁷ cm/s	新建
2	防渗区	各生产车间及 原料、产品库	黏土基础防渗+混凝土地面, 渗透系数≤1.0×10 ⁻⁷ cm/s	等效黏土防渗层 Mb≥1.5m, K≤1×10 ⁻⁷ cm/s	已建,满足 防渗技术要 求
3	简单 防渗 区	办公生活区及 道路	一般地面硬化	一般地面硬化	已建

表 5.2-23 本项目防渗分区一览表

(2) 污染监控措施

本次评价给出地下水污染监控计划,目的在于保护评价区内居民饮水安全, 对水质污染及时预警,并采取合理的补救措施。

①监测点位

设置1口背景值监测点(厂区内上游水井),下游设置1口污染扩散监测井(西厂界下游约480m处)。

监测项目:色度、总硬度、溶解性总固体、挥发酚、耗氧量、亚硝酸盐氮、

氨氮、氰化物、六价铬、砷、菌落总数、总大肠菌群、汞、铅、镉、铁、锰、氟化物、氯化物、硝酸盐氮、硫酸盐、石油类共22项,同时记录井深、水位和水温。

②监测频率

背景值监测点每年监测一次,扩散监测点每半年1次,委托有资质单位进 行水样采集与化验分析。

③地下水监测数据管理

监测结果应及时建立档案,并定期环保部门汇报,对于常规监测数据应该进行公开,特别是跟周边居民用水安全相关的数据要定期张贴公示,如发现异常或者发生事故,应加密监测频次,改为每周监测一次,并分析污染原因,及时采取应对措施。

5.2.3.7 地下水评价结论

本项目地下水环境环境保护措施与对策符合《中华人民共和国水污染防治法》和《中华人民共和国环境影响评价法》的相关规定,按照"源头控制、分区防控、污染监控、应急响应",重点突出饮用水水质安全的原则。本项目源头控制措施主要包括在工艺、管道、设备、污水储存及处理构筑物采取相应措施,防止和降低污染物跑、冒、滴、漏,将污染物泄漏的环境风险事故降到最低程度;本项目厂区实施分区防渗措施,将厂区划分为重点防渗区、一般防渗区和简单防渗区,各分区按照不同分区要求分别设计防渗方案。

综上所述,本项目厂区各污染单元在落实好防渗、防污措施后,本项目污染物能得到有效处理,对地下水环境影响较小。

5.2.4 噪声环境影响分析

5.2.4.1 噪声源及防治措施

本次改建工程运营期主要噪声源主要来自清理、粉碎、酿酒、锅炉房、灌装和污水处理等工序的生产设备,排放源强声级为80~85dB(A)。

本项目采取的噪声防治措施如下:

(1) 合理布局:主要产噪设备均布置在车间内,利用房间进行隔声;并尽量布置在中央,利用距离进行噪声衰减;

- (2) 选用高效低噪音设备,从声源上降低设备本身噪声;
- (3)设备安装时,先要打坚固地基,加装减振垫,增加稳定性减轻振动,水泵等进出管上采用柔性接头代替钢性接头等;
- (4)加强设备的维护,确保设备处于良好的运转状态,杜绝因设备不正常运转时产生的高噪声现象:
- (5)加强人工作业过程中的管理,规范员工操作,避免不必要的噪声产生。通过上述的治理措施后可有效降低噪声值 20dB(A)以上,本项目噪声产生、治理及排放情况见下表。

本项目声环境影响评价工作等级为二级,项目所在区域周边 200m 范围内 无声环境敏感目标,本次评价至四侧厂界外 1m,进行厂界达标论证。

5.2.4.2 噪声预测模式

根据《环境影响评价技术导则声环境》(HJ2.4-2009),结合本项目声源的噪声排放特点,结合选择点声源预测模式,来模拟预测这些声源排放噪声随距离衰减变化的规律。具体预测模式如下:

(①) 噪声距离衰减模式

$$L_p(r) = L_p(r_0) - 20\log\left(\frac{r}{r_0}\right) - R$$

式中:

 $L_p(r)$ — 距声源 r 米处的噪声预测值,dB(A);

 $L_p(r_0)$ —参考位置 r_0 处的声级, dB(A);

r — 预测点位置与点声源之间的距离, m;

ro—参考位置处与点声源之间的距离,取1m;

R—厂房墙体隔声值,厂房墙体隔声值取 15dB(A),风机隔声罩取 10dB(A)。

(①) 噪声叠加模式

$$L = 10 \lg \sum_{i=1}^{n} 10^{\frac{L_{pi}}{10}}$$

式中:

L — 受声点处 n 个噪声源的总声级, dB(A);

Lpi—第 i 个噪声源的声级;

n—噪声源的个数。

表 5.2-24 本项目新增噪声源强调查清单(室内声源)

序	建筑			声功	古派协制	相对	讨空间位置/m		距室内		zh 公加托)	建筑	筑物外噪声
庁 号	物名	声源名称	型号	戸切 率级	声源控制 措施	v	XI.	7	边界距	运行时段	建筑物插入 损失/dB(A)	声压	建筑物外距
	称			平级	1月 11년	X	У	Z	离/m		iyy人/dib(A)	级	离 m
1		升降机	/	80	减振、隔声	471380.98	3946950.31	2.5	3	昼夜	10	65	1.0
2		风冷式冷 却器	7.5kw*2	85	减振、隔声	471380.52	3946956.86	2.5	5	昼夜	10	70	1.0
3		搅料机	/	85	减振、隔声	471382.91	3946944.95	2.5	5	昼夜	10	70	1.0
4	4#大 曲车	双梁起重 机	16t	85	减振、隔声	471384.37	3946948.51	2.5	8	昼夜	10	70	1.0
5	间	抓斗	/	80	减振、隔声	471389.24	3946952.37	2.0	5	昼夜	10	65	1.0
6		扬渣机	/	80	减振、隔声	471401.63	3946955.90	3.0	6	昼夜	10	70	1.0
7		喂料机	/	80	减振、隔声	471414.48	3946949.90	2.0	5	昼夜	10	70	1.0
8		鼓风机	/	85	减振、隔声	471460.48	3946986.65	2.0	5	昼夜	10	80	1.0
9	6#大	升降机	/	80	减振、隔声	471458.25	3946947.31	2.5	5	昼夜	10	65	1.0
10	曲车间	风冷式冷 却器	7.5kw*2	85	减振、隔声	471456.32	3946958.25	2.5	8	昼夜	10	70	1.0

11		搅料机	/	85	减振、隔声	471421.59	3946958.02	2.5	6	昼夜	10	70	1.0
12		双梁起重 机	16t	85	减振、隔声	471369.31	3946912.36	2.5	3	昼夜	10	70	1.0
13		抓斗	/	80	减振、隔声	471378.25	394692.368	2.0	6	昼夜	10	65	1.0
14		扬渣机	/	80	减振、隔声	471463.25	3946911.28	3.0	5	昼夜	10	70	1.0
15		喂料机	/	80	减振、隔声	471415.698	3946956.98	2.0	5	昼夜	10	70	1.0
16		鼓风机	/	85	减振、隔声	471497.32	3946861.03	2.0	5	昼夜	10	80	1.0
9		过滤机	BJGY(B) -10	80	减振、隔声	471445.21	3946979.82	2.0	5	昼夜	10	70	1.0
10		纯水制备	5T/h	80	减振、隔声	471370.06	3946952.13	7.5	2	昼夜	10	85	1.0
11	灌装 车间	灌装设备	P=22kW	80	减振、隔声	471435.36	3946949.24	0.5	1	昼夜	10	75	1.0
12		水泵	/	80	减振、隔声	471437.07	3946954.29	1.5	2	昼夜	10	85	1.0
13		风机	/	85	减振、隔声	471453.86	3946964.95	0.5	1	昼夜	10	95	1.0

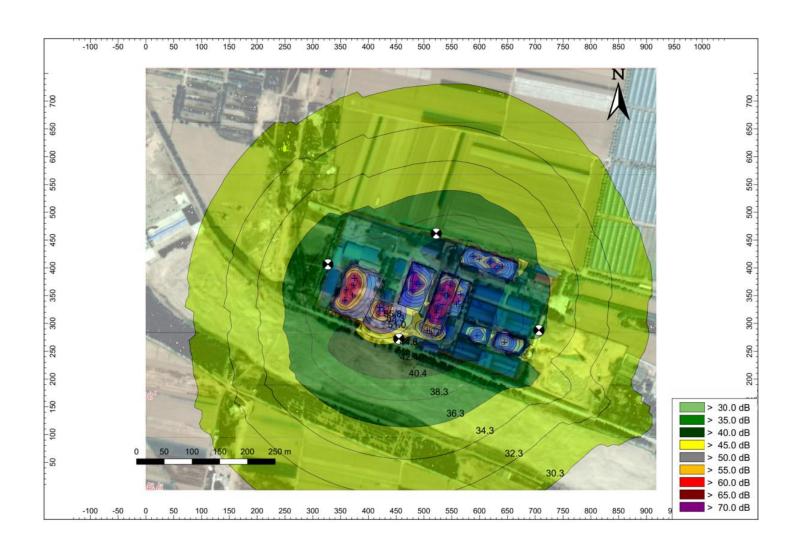


图 5.2-4 噪声预测结果等声级线图

5.2.4.3 噪声预测结果及评价

本次改建工程噪声预测结果见下表。

表 5.2-25 噪声预测结果 单位: dB(A)

		• • • • • • • • • • • • • • • • • • • •	·W/ 1XM1>			
预测点	预测时段	贡献值 /dB(A)	现状值 /dB(A)	叠加值 /dB(A)	标准限值 (昼间) /dB(A)	达标情况
北侧	昼间	36.5	51.3	51.4	60	达标
厂界	夜间	36.5	39.2	41.1	50	达标
西侧	昼间	35.5	53.3	53.4	60	达标
厂界	夜间	35.5	43.5	44.1	50	达标
东侧	昼间	44.1	50.2	51.2	60	达标
厂界	夜间	44.1	40.5	45.7	50	达标
南侧	昼间	34.2	53.4	53.5	60	达标
厂界	夜间	34.2	43.3	43.8	50	达标
北侧	昼间	36.5	53.1	53.2	60	达标
厂界	夜间	36.5	39.6	41.3	50	达标
西侧	昼间	35.5	54.0	54.1	60	达标
厂界	夜间	35.5	43.3	44.0	50	达标
东侧	昼间	44.1	50.5	51.4	60	达标
厂界	夜间	44.1	40.3	45.6	50	达标
南侧	昼间	34.2	54.3	54.3	60	达标
厂界	夜间	34.2	43.2	43.7	50	达标

由上表可知,本项目改建完成后,噪声源经过降噪及距离衰减后,厂界的噪声叠加值均可满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2 类区域昼间、夜间的标准要求。

表 5.2-26 声环境影响评价自查表

7 5.2 20) 1 JUAN 11 VI DI										
エ	作内容				自查	项目				
评价等级与	评价等级	一级□ 二级☑				三级口				
范围	评价范围	200 m ⊠		•	大于 200 m□			小于 200 m□		
评价因子	评价因子	等效连续 A 声	告级☑		最大 A 声级	₹□ 计权	等效连	续感觉	党噪声级□	
评价标准	评价标准	国家标准☑ 地方标准□				国外标准□		示准□		
	环境功能区	0 类区□	1 类区		2 类区☑	3 类区□	4a 类	(区口	4b 类区□	
1四十八五十〇	评价年度	初期□			近期口	中期□	远期□			
现状评价	现状调查方法	现场实验	则法☑		现场实测	加模型计算剂	去口	收集资料□		
	现状评价	达标百	分比 100%							
噪声源 调查	噪声源调查方法	现场实测		己有资料☑			有	开究成员	果口	

	预测模型	导则推荐模型☑	其他□					
丰 . 上 上 本 里 /	预测范围	200 m ⊠	大于 200	0 m□	小于 200 m□			
声环境影响预测与	预测因子	等效连续 A 声级☑	最大 A 声	级□ 计权	等效连续	感觉噪声级□		
评价	厂界噪声贡献值	达标 ☑		不达标□				
VIVI	声环境保护目标	达标□	不达标□					
	处噪声值	之 称口						
环境监测计	排放监测	厂界监测☑ 固定	位置监测□	位置监测□ 自动监测□ 手动监测□ 无监测				
划	声环境保护目 标	监测因子: (等效:	连续 A 声级)	无监测□				
XII	处噪声监测	血侧囚 1: (寻双	E线 A 产级)	监测点位数(4)	儿血侧口		
评价结论	环境影响		可行☑	不可行□				
	注	:"□"为勾选项,可	√; "()" ;	为内容填写项。				

5.2.5 固体废物对环境的影响分析

5.2.5.1 固体废物产生量及处置措施

本次改建产生的固废包括一般工业固体废物和危险废物。其中,一般工业固体废物包括一体化筒产生的仓杂质粉尘、酒糟、污水处理站污泥、废离子交换树脂、废过滤材料;危险废物为修配车间产生的废矿物油和化验室白酒检测过程无机废液处理产生的残渣、残液及实验用品,均属于危险废物,暂存于厂区危废暂存间内,定期交由有资质单位处理。本次改建固体废物产生及处置情况详见下表。

	农 3.2-27									
序号	固体废物名称	产生工序	产生量	固体废物类	综合利用					
万万	四平及初石你 	广生工庁	/(t/a)	别	或处置措施					
1	杂质粉尘 S1	布袋除尘设备	19	一般固废	作为家畜饲料直接出售					
	North delta con	Trib) 44 12-		40.00	暂存在酒糟库,日产日					
2	酒糟 S2	酿造工序	24300	一般固废	清,外售给附近养殖场					
					作饲料					
3	污水处理站污泥	生化处理工序	46.24	一般固废	干化后,由环卫部门定					
	S3	110,00,110,1	10.21	74,247,2	期清运处理					
4	废离子交换树脂	 锅炉软水制备	0.2	一般固废	由厂家定期进行回收并					
	S4	144分 4人人口1中1-田	0.2		更换					
5	废过滤材料 S5	深度处理系统、	0.3	一般固废	由厂家定期进行回收并					
3	及过滤材料 33	原酒过滤设备	0.3	双凹液	更换					
6	生活垃圾 S7	生活办公	15	一般固废	由环卫部门统一处置					
7	废矿物油 S6	修配车间	0.5							
8	化验室废液、废包 装 S6	化验室	0.03	危险废物	送有资质单位处置					

表 5.2-27 本次改扩建工程固体废物产生情况

(1) 一般工业固废

①杂质粉尘

本项目使用高粱为去壳后高粱,一体化筒仓在除杂及粉碎过程杂质的产生量按原料的 0.1%计算,则杂质产生量为 19t/a,改建完成后全厂杂质粉尘产生量为 33.5t/a。粉尘主要成分为高粱,为很好的饲料,直接出售给养殖场,用于家畜养殖。

②酒糟

酒糟是本项目产生的最大的副产物,酒糟中含有稻壳、麦糠及发酵后产生的有机物等,本项目酒糟产生量为 24300t/a,现有项目酒糟产生量为 16200t/a,总酒糟产生量为 40500t/a,将酒糟暂存在至酒糟库,外售给附近养殖场作饲料。日产日清,禁止在酿造车间内堆积。

③污水处理站污泥

经核算,本次改建完成后全厂废水处理产生的污泥量为 46.24t/a。脱水后,定期清运至环卫部门指定地点倾倒,由环卫部门统一处置。

④废离子交换树脂 S4

锅炉房软水制备采用树脂交换法,离子交换树脂需定期更换,产生少量的废离子交换膜,产生量约0.2t/a,属于一般工业固废,由厂家定期进行回收并更换。

⑤废过滤材料 S5

污水处理站废水深度处理系统过滤设备及白酒过滤设备,过滤材料石英砂和活性炭需进行定期更换,产生量约为0.3t/a,属于一般工业固废,由厂家定期进行回收并更换。

综上所述,本项目产生的固体废物处置措施可行,不会对周边环境产生明显不利影响,不会造成二次污染。

(2) 生活垃圾

生活垃圾主要为厂内员工日常生活过程中产生的垃圾,本次改建工程新增年产量为15t,活垃圾集中存放在收集点内,定期交由环卫部门进行处理。

(3) 危险废物

本次改建生产运营过程产生的危险废物主要为:

- ①修配车间产生的废矿物油。本次改建废矿物油产生量约 0.5t/a, 改建完成后全厂产生量约为 0.7t/a, 属于危险废物,废物类别为 HW08 其他废物,废物代码为 900-214-08;
- ②化验室在白酒检测过程无机废液处理产生的残渣、残液及实验用品,属于危险废物,本次改建产生量约为 0.03t/a,改建完成后全厂产生量约为 0.05t/a,废物类别为 HW49 其他废物,废物代码为 900-047-49。

根据《危险废物贮存污染控制标准》(GB18597-2023)的规定,本项目拟在厂区建设一座 10m² 的危废暂存间,场所建设要求应当符合《危险废物贮存污染控制标准》要求。

- 5.2.5.2 一般固体废物环境影响分析
- 一般固体废物的具体管理措施如下:
- ①一般固废在贮存过程采取防渗漏、防雨淋、防扬尘等环保要求。各类废物可分类收集、定点堆放在厂区内的固定区域。其中杂质粉尘、酒糟外售给附近养殖场作饲料,污水处理站污泥干化后由环卫部门定期清运处理,废离子交换树脂、废过滤材料由厂家定期回收并更换。
 - ② 厂区内职工日常生活产生的生活垃圾,交由环卫部门统一处置。

综上所述,本项目产生的固体废物处置措施可行,不会对周边环境产生明显不利影响,不会造成二次污染。

5.2.5.3 危险废物环境影响分析

本项目危险废物分类收集后暂存于厂区危废暂存间内,定期交由有资质单 位处理。

(1) 危险废物包装、收集及贮存场所的环境影响分析

本次改建成拟建设一座危废暂存间,位于厂区内西北角,占地面积 10m², 主要用于暂存废矿物油、化验室废液、废包装等危废,该危废暂存间暂存能力 为 1t,能够满足本项目危废暂存需求。废矿物油和化验室废液分别存放于密封 桶内,并采用隔板分区存放,危废暂存间做好三防措施,贮存设施地面与裙脚 采取表面防渗措施,并设置径流疏导系统,按要求进行建设。最终定期交由有 资质单位进行处置。采取上述措施后,将不会对环境造成明显影响。

	1\(\frac{1}{2}\frac{1}			7/// \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		シ ロ	
贮存场所	危险废物名称	危险废	危险废物代	占地面	贮存方式	贮存	贮存
名称	厄 险及初石你	物类别	码	积/m²	川	能力	周期
危险废物	废机油、废润滑油	HW08	900-214-08	10	密封桶	1+	<1 年
暂存间	化验室废液、废包装	HW49	900-047-49	10	名 到佣	11	~1 牛

表 5.2-28 建设项目危险废物贮存场所(设施)基本情况

(2) 危险废物运输过程环境影响分析

本项目危废采用密封塑胶桶贮存和运输,在运输过程中使用专业危废运输车辆进行运输,运输过程采取跑冒滴漏防治措施,发生散落概率极低。当发生散落时,可能情况有:①盛放危废的塑胶桶整个掉落,但桶未破损,司机发现后,及时返回将胶桶放回车上,由于塑胶桶未破损,没有废物泄漏出来,对周边环境基本无影响;②盛放危废的塑胶桶掉落,由于重力作用,塑胶桶掉落在地上导致桶身破损或盖子打开,司机发现后,及时采用清扫等措施,将危废收集后包装,对周边环境影响较小。因此本项目的危废在运输过程中对周边环境影响较小。

(3) 危险废物委托处置的环境影响分析

项目产生的危险废物类别为 HW08、HW49,委托有资质的单位进行处置, 厂区与有资质的单位签订处置协议,委托处置可行。

综上所述,本项目危险废物处置措施可行,预计不会对周边环境产生明显 不利影响,不会造成二次污染。

5.2.6 生态环境影响分析

本项目占地性质为工业用地,占地面积较小,不会对周围生态环境产生大的影响。

工程运营期主要生态影响为工程运营过程中产生的污染物,主要为 NO_2 、烟尘、 NH_3 、 H_2S 、非甲烷总烃、颗粒物、乙醇,对周围动、植物及农作物的生长造成一定的影响,固废的堆放也会对周围环境产生一定影响。

(1) 大气污染物对自然生态和农业生态环境的影响

本工程生产过程中排入环境中的有害物主要是烟尘、NO₂,进入大气后,随大气扩散,并在一定距离内沉降,降落至地面后参与理化变化,部分被植物叶片截留后,堵塞植物叶片气孔,降低植物的呼吸作用和光合作用,影响作物

正常生长。

大气环境影响分析章节对本工程正常生产及非正常生产状态的各种污染物排放进行了计算和论述,具体分析各污染物最大落地浓度及出现的距离等计算结果可以看出,正常生产情况下,工程生产所排放的 PM₁₀、NO₂ 的最大落地浓度数值出现距离均相对较近,其数值与当地敏感植物的有害阈值相比,远低于自然植物和农作物相应的接受阈值,因此,生产排污对周围农作物的正常生长基本不会构成影响。

(2) 固废对生态环境的影响

本工程产生固体废物主要为酒糟,产生量较大,酒糟处置过程中需要占用 大量土地,改变土地原有功能,影响区域景观,对当地生态环境造成影响。

本工程对酒糟外售做养殖场饲料,并做到日产日清,禁止在酿造车间内堆积。

为美化环境、保护环境,本环评要求:

减少生产中排放的大气污染物对周边区域及其它植物的不利影响,关键在于推行清洁生产工艺,尽量在源头减少污染物的产生量。对职工要加强环境保护意识的教育,采取严格的污染防治措施,对每个排污环节控制、管理,尽量将污染物排放降至最低限度。

加强厂区绿化:绿化主要布置在厂区道路、车间间隔、办公生活区及厂区 边界附近。项目在现有厂区内进行绿化美化,增加绿地面积,可将项目对区域 生态环境影响降为最低,其生态完整性不会发生变化,生态体系仍然维持原有 的稳定性和生态承载能力,可以认为本项目的建设从宏观上讲对生态环境影响 很小。

5.2.7 环境风险分析

根据《建设项目环境风险评价技术导则》(HJ 169-2018)的要求,本次环境风险评价的目的在于识别物料生产、贮存、转运过程中的风险因素及可能诱发的环境问题,并针对潜在的环境风险,提出相应的预防措施,以使建设项目的事故率、损失和环境影响达到可接受水平。

5.2.7.1 评价依据

(1) 建设项目风险源调查

项目风险单元主要为酒库、燃气管道、危废暂存间和污水处理间。项目涉及的危险物质主要为:①原酒(酒精度数约 65°),主要成分为乙醇;②天然气,主要成分为甲烷;③废矿物油。根据《建设项目环境风险评价技术导则》(HJ 169-2018)中附录 B 表 B.1 的规定,乙醇未被列为危险物质。根据《危险化学品重大危险源辨识》(GB18218-2018),乙醇属于易燃液体,临界量为 500吨。

白酒中乙醇是易燃物质,常温下易挥发,生产过程中如发生跑冒滴漏,进入空气等原因造成其蒸汽与空气形成爆炸性混合物,存在遇明火、高热、静电而引起火灾、爆炸的可能性。天然气泄漏或者废矿物油泄漏遇明火易发生火灾爆炸事故,引发次生/伴生污染物 CO 的排放。

(2) 环境风险潜势初判

- 1) 危险物质及工艺系统危险性(P)的确定
- ①危险物质数量与临界量的比值(Q)的确定

根据《建设项目环境风险评价技术导则》(HJ 169-2018)附录 B 及《危险化学品重大危险源辨识》(GB18218-2018)表 1-危险化学品名称及其临界量,计算本项目的危险物质数量与临界量比值(Q),根据《企业突发环境事件风险分级方法》(HJ941-2018),计算结果如下表所示。

厂区内酒库最大储存酒量为 9920t,酒精度数为 45,则乙醇最大存在量为 9920×45%=4464t,天然气最大管线在线量按 0.5t 计,计厂区内采用消毒剂次氯酸钠溶液最大储存量为 100kg,废矿物油年产生量为 0.7t;

	衣 3.2-29 建反坝日 Q 值明定衣										
序号	危险物质名称	CAS 号	最大存在总量 qn/t	临界量 Qn/t	 该种危险物质 Q 值	项目Q值					
						Σ					
1	乙醇	64-17-5	4464	500	8.928						
	COD 浓度										
2	≥10000mg/l	/	2.32	10	0.232						
	的有机废液					9.212					
3	甲烷	74-82-8	0.5	10	0.05						
4	废矿物油	/	0.7	2500	0.00028						
5	次氯酸钠	7681-52-9	0.1	5	0.002						

表 5 2-29 建设项目 0 值确定表

由表可知,本项目危险物质数量与临界量比值 Q=9.212<10,则本项目环境风险潜势为 I 级。

(3) 评价等级判定

根据《建设项目环境风险评价技术导则》(HJ169-2018),本项目环境风险潜势为 I 级,本项目环境风险主要进行简单分析。

5.2.7.2 环境敏感目标概况

(1) 大气环境

依据环境敏感目标环境敏感性及人口密度划分环境风险受体的敏感性,按照《建设项目环境风险评价技术导则》(HJ 169-2018)确定大气环境敏感程度等级。本项目周边 5km 范围内人口总数 4.8 万人,500 米范围内人口总数为 0,大气环境敏感程度分级为 E2。

(2) 地表水环境

依据事故情况下危险物质泄漏到水体的排放点受纳地表水体功能敏感性,与下游环境敏感目标情况,按照《建设项目环境风险评价技术导则》(HJ 169-2018)附录 D 确定地表水环境敏感程度等级。本项目废水排入祁县鸿宇市政污水处理有限公司处理,祁县鸿宇市政污水处理有限公司处理后废水排入昌源河,昌源河水域环境功能为 V 类,地表水功能敏感性为低敏感 F3;排放点下游(顺水流向)10km 范围内无类型 1 和类型 2 包括的敏感保护目标,环境敏感目标分级为 S3。综上,项目地表水环境敏感程度分级为 E3。

(3) 地下水环境

依据地下水功能敏感性与包气带防污性能,按照《建设项目环境风险评价 技术导则》(HJ 169-2018)附录 D 确定地下水环境敏感程度等级。本项目地下 水评价范围内存在分散式饮用水水源地,按照表 D.6,地下水功能敏感性分区 为较敏感 G2;根据场地地勘结果可知本项目场地的包气带防污性能为一般,按 照表 D.7,包气带防污性能分级为 D2。综上,按照表 D.5,项目地下水环境敏 感程度分级为 E2。

本项目环境敏感特征详见下表。

表 5.2-30 本项目环境敏感特征表

类别	环境敏感特征									
J 2/44				也 5 km 范围	 園内					
	序号	敏感目标名称	相对方位	距离/		属性	人口数			
	1		东北	2000	0	村庄	2650			
	2	沙堡村	东北	1850	0	村庄	654			
	3	丰泽村	南	1570	0	村庄	987			
	4	秦村	东南	2120	0	村庄	865			
	5	圪垛村	东南	2210	0	村庄	785			
	6	永兴庄	东南	328	5	村庄	1040			
	7	里村	西	2850	0	村庄	3172			
	8	修善村	西	3588	8	村庄	1898			
	9	丰固村	西北	3254	4	村庄	2100			
	10	西阳羽	西北	3040	0	村庄	962			
177.1分	11	前营村	西北	3120	0	村庄	950			
环境 空气	12	西高堡村	西北	4330	0	村庄	578			
工门	13	李家堡	东北	3558	8	村庄	674			
	14	吴家堡	东北	3623	3	村庄	820			
	15	塔寺村	东北			村庄	2032			
	16	谷恋村	东北	4052		村庄	1813			
	17	刘家堡	东南	3251 木		村庄	424			
	18	西六支村	东南	4090	0	村庄	3553			
	19	高村	东南	278:	5	村庄	549			
	20	北谷丰	西南	4272	2	村庄	4000			
	21	王村	东南	2970	0	村庄	3103			
	22	县城(部分)	南	4229	9	城镇	14476			
		厂址周边	500 m 范围内	人口数小计			0			
		厂址周边	2.5 km 范围内人	口数小计			48085			
		大學	「环境敏感程度	E值			E2			
			受	纳水体						
	序号	受纳水体名称	排放点水	域环境功能	能	24 h	内流经范围/km			
	1	昌源河	《地表水环	、境质量标 /	隹》		/			
	(GB3838-2002) V 类标准									
地表	内陆力	水体排放点下游 101	km(近岸海域-	一个潮周期 标	最大水	平距离两	所倍)范围内敏感目 			
水										
	序号	敏感目标名称	环境敏感	特征	水质	目标	与排放点距离/m			
	排放点下游(顺水流向)10km 范围内无敏感保护目标									
					国内无敏	(感保护				
1.1		· · · · · · · · · · · · · · · · · · ·	水环境敏感程度		<u> </u>	• 173. N → 1-1	E2			
地下	序号	敏感目标名称	环境敏感特征	水质目标	包气带	防污性	与下游厂界距离/m			

类别	环境敏感特征						
水							
	1	西阳羽水井	较敏感	/	D3	3200	
	2 前营村水井 较敏感 / D3					3310	
		地下	E2				

5.2.7.3 环境风险识别

(1) 物质危险性识别

危险物质识别范围:主要原材料及辅助材料、中间产品、副产品、最终产品、污染物、 火灾和爆炸件/次生物等。项目涉及的危险物质乙醇、天然气、 废矿物油属于可燃、易爆物质范围,次氯酸钠属于有毒有害物质。

表 5.2-31 乙醇理化性质与危害毒性表

品名	乙醇	从 3.2-31 2 别名		一月 1 1 1 1 1 1 1 1 1	英文名	Ethanol	
危规号	32061	危险性类别	第 3.2 类中闪点易燃液 体		CAS 号	64-17-5	
	分子式	CH ₃ CH ₂ OH	分子量	46.07	熔点(℃)	-114.1	
	沸点(℃)	78.3	相对密度 (水=1)	0.79	临界温度 (℃)	243.1	
理化性	燃烧值 (kJ/mol)	1365.5	饱和蒸汽 压(kPa)	5.33(19℃)	闪点(℃)	12	
质	引燃温度 (℃)	363	爆炸上 限%(V/V)	19.0	爆炸下 限%(V/V)	3.3	
	外观气味	无色透明液体,水溶液具有特殊性、令人愉快的香味,并略带 激性					
	溶解性 与水混溶,可混溶与乙醚、氯仿、甘油、甲醇等多数有机溶剂						
	稳定性: 稳定			燃烧分解产物:一氧化碳、二氧化碳			
	聚合危害:不聚合			燃烧性:	本品易燃,具	刺激性	
	禁忌物: 强氧化剂、酸类、酸酐、碱金属、胺类						
燃烧爆	危险特性:易燃,其蒸汽与空气可形成爆炸性混合物,遇明火、高热能引起燃烧 爆炸。与氧化剂接触发生化学反应或引起燃烧。在火场中,受热的容器有爆炸危						
炸危险 性	险。其蒸汽比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。						
14.	消防措施:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。 灭火剂:抗溶性泡沫、干粉、二氧化碳、砂土。						
毒性	毒性: 属微毒类。 急性毒性: LD ₅₀ : 7060mg/kg(兔经口); 7430mg/kg(兔经皮); LC ₅₀ : 37620mg/m ³ , 10 小时(大鼠吸入); 人吸入 4.3mg/L×50 分钟, 头面部发热, 四肢发凉, 头痛; 人吸入 2.6mg/L×39 分钟, 头痛, 无后作用。						

健康危害	本品为中枢神经系统抑制剂。首先引起兴奋,随后抑制。急性中毒:急性中毒多发生于口服。一般可分为兴奋、催眠、麻醉、窒息四阶段。患者进入第三或第四阶段,出现意识丧失、瞳孔扩大、呼吸不规律、休克、心力循环衰竭及呼吸停止。慢性影响:在生产中长期接触高浓度本品可引起鼻、眼、粘膜刺激症状,以及头痛、头晕、疲乏、易激动、震颤、恶心等。长期酗洒可引起多发性神经病、慢性胃炎、脂肪肝、肝硬化、心肌损害及器质性精神病等。皮肤长期接触可引起干燥、脱屑、皲裂和皮炎。
泄漏处理	迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸汽灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。
储运	储存于阴凉、通风的库房。远离火种、热源。库温不宜超过 30℃。保持容器密封。应与氧化剂、酸类、碱金属、胺类等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。运输:本品铁路运输时限使用钢制企业自备罐车装运,装运前需报有关部门批准。运输时运输车辆应配备相应品种和数量的消防器材及泄漏应急处理设备。夏季最好早晚运输。运输时所用的槽(罐)车应有接地链,槽内可设孔隔板以减少震荡产生静电。严禁与氧化剂、酸类、碱金属、胺类、食用化学品等混装混运。运输途中应防曝晒、雨淋,防高温。中途停留时应远离火种、热源、高温区。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。铁路运输时要禁止溜放。严禁用木船、水泥船散装运输。

表 5.2-32 天然气理化性质及危险特性一览表

			V-1012/2/2					
品名	天然气	别名	湮	清精	英文名	Natural gas		
危规号	21007	危险性类别	第 2.1 类	第 2.1 类易燃液体		8006-14-2		
	分子式	/	分子量	46.07	熔点(℃)	-182.5		
	沸点(℃)	161.5	相对密度	0.45	临界温度	35.2		
	かは (し)	-161.5	(水=1)	0.43	(℃)	33.2		
理化性	燃烧值	饱和蒸汽 52.00		53.23	担对家庄	0.55		
质	(kJ/mol)	1398.4	1398.4 压 (kPa)		相对密度	0.55		
	外观气味	无色透明液体,水溶液具有特殊性、令人愉快的香味,并略带刺						
	21 / NG (19/1)			激性				
	溶解性	与水混溶,可混溶与乙醚、氯仿、甘油、甲醇等多数有机溶剂						
		燃烧分解产物:一氧化碳、二氧化碳、						
燃烧爆	稳	稳定性:稳定	2	氮氧化物、硫、氧化物等有毒				
炸危险								
性	聚合	危害: 不聚合	害: 不聚合 燃烧性: 本品易燃, 具刺激性					
		林	忌物:强氧	化剂、卤素				

	消防措施:灭火方法:切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳、干粉。
毒性	属微毒类。允许气体安全地扩散到大气中或当作燃料使用。由单纯性窒息作用, 在高浓度时因缺氧窒息而引起中毒。
健康危害	侵入途径: 吸入,皮肤接触 健康危害: 天然气主要成分是甲烷,甲烷对人基本无毒,但浓度过高时,使空气中氧含量明 显降低,使人窒息。当空气中甲烷大 25%~30~时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离,可致窒息死亡。皮肤接触液化本品,可致冻伤。
泄漏处理	迅速撤离泄漏污染物人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。合理通风,加速扩散,禁止泄漏物进入限制性空间(如下水道),以避免发生爆炸。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大流量废水。如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。也可以将漏气的容器移至空旷处,注意通风。漏气容器要妥善处理,修复、检验后再用。
急救办法	吸入: 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 皮肤接触: 用水冲洗 15 分钟,衣物与鞋清洗干净,出现不适就医。若有冻伤,就医治疗。 眼睛接触:立即用大量清水冲洗 15 分钟,请医生处理。

表 5.2-33 次氯酸钠理化性质及危险特性一览表

				Sodiur		Sodium	
品名	次氯酸钠	别名	消毒剂		英文名	hypochlorite	
						solution	
危规号	83501	危险性类别	第 8.3 类其它腐蚀品		CAS 号	7681-52-9	
	分子式	NaClO	分子量	74.44	熔点(℃)	-65	
	沸点 (℃)	102.2	相对密度	1.10	临界温度	,	
理化性	が思くした	102.2	(水=1)	1.10	(℃)	/	
万	燃烧值	1398.4	饱和蒸汽	52.22	相对密度	0.55	
	(kJ/mol)	1398.4	压 (kPa)	53.23	旧内面反	0.55	
	外观气味	微黄色溶液或白色粉末固体,有似氯气的味道					
	溶解性	与水混溶,	可混溶与乙醚	5、氯仿、甘注	由、甲醇等多	数有机溶剂	
燃烧爆	4台。	定性:不稳定	然烧分解产物	: 氯化物			
炸危险		正注: 小個足					

性	聚合危害: 不聚合	燃烧性: 不燃
	禁忌物	J: 碱类
	危险特性:受高热分解产生有毒的腐蚀 物 灭火方法:采用雾状水、二氧化碳、砂	生烟气。具有腐蚀性有害燃烧产物:氧化
	70,70,714. 70,715 AFTILIBATION DE	
毒性	急性毒性: LD50:5800mg/kg (小鼠纟	圣口)
健康危害	侵入途径:吸入,皮肤接触 健康危害:次氯酸钠放出的游离氯可引流 敏作用。用次氯酸钠漂白液洗手的工人, 皮肤接触:脱去污染的衣着,用大量流远 眼睛接触:立即提起眼睑,用大量流动	动清水彻底冲洗。
泄漏处理	好防毒面具,穿相应的工作服。不要直接	后转移到安全场所。如大量泄漏,利用围 ————————————————————————————————————
储运注意		远离火种、热源。防止阳光直射。应与还 肝存放,不可混储混运。搬运时要轻装轻 作业要注意个人防护。

(2) 生产系统危险性识别

①识别内容

生产系统危险性识别包括生产装置、储运装置、公用工程和辅助生产设施以及环境保护设施。

②危险单元划分及潜在风险源

根据项目工艺流程和平面布置,结合项目物质危险性识别结果,本项目危险单元划分结果见下表。

表 5.2-34 危险单元划分结果及潜在风险源一览表

危险单元	潜在风险源	主要危险物质	存在条件	触发因素
酒库及输送管道	泄漏	乙醇	常温常压	罐体、管道阀门等 破损
污水处理设施及	泄漏	高浓度有机废水	常温	

管道				
天然气管道	泄漏	甲烷	常温常压	管道阀门等破
危废暂存间	危废泄漏	废矿物油	常温常压	贮存容器破损或 倾倒
废水处理加药间	洒落、泄漏	次氯酸钠	常温常压	贮存容器破损或 倾倒

5.2.7.4 环境风险分析

(1) 白酒泄漏环境风险分析

本项目原酒储罐置于酒库内,主要成分为乙醇,泄漏主要表现为储罐阀门、管道破损引发的泄漏,泄漏后酒精的蒸发可能会对环境空气造成影响。在气温较高时,泄漏区附近酒精浓度较大,可能使人中毒,白酒泄漏之后处置不当可能导致火灾爆炸等次生环境事件,进而影响环境。

(2) 污水处理设施事故风险分析

污水处理设施运行过程中如发生格栅堵塞、管道损坏、水池泄漏等情况时, 在对这些处理设施进行检修时,或者在对处理设施进行日常维护时,处理设施 停运,将不可避免地造成污水处理能力的下降,废水外排,会对地表水环境产 生影响。

(3) 天然气管道泄漏事故风险分析

项目使用管道天然气,天然气从区域主干管接入后厂区采用中低压柜式调 压器调压后使用,主要的风险类型为天然气泄露,在发生泄漏时,只要及时将 控制阀门关闭,泄漏量很小。经过妥善的风险防范措施,本项目环境风险在可 接受的范围内。

(4) 废矿物油泄漏环境风险分析

废矿物油危险废物经收集后放入密闭容器中贮存在危废暂存间,按照《危险废物贮存污染控制标准》及其修改单的相关规定进行建设,危废间设置围堰,若发现贮存容器倾倒或破损,可及时将泄漏的危险废物收集转移至备用容器中。因此,项目危险废物泄漏对周围环境影响较小。

(5) 次氯酸钠泄漏环境风险分析

本项目涉及的环境风险物质为加药间的次氯酸钠溶液(有效氯=5%)。泄漏事故类型为计量泵、储罐进液管、出液管接口或阀门渗漏。次氯酸钠属于有毒物质,人体接触会造成手掌大量出汗,指甲变薄,毛发脱落等伤害,同时也会污染水环境。

(6) 次生污染环境风险分析

白酒、天然气和废矿物油泄漏引发发生火灾事故,会对大气及地表水环境产生影响。

1) 火灾爆炸产生的消防水等对地表水环境的影响

原酒储罐等如发生火灾爆炸事故,将产生大量的消防废水。若消防废水不能妥善处置,直接对外排放,消防废水将通过厂区地面径流进入昌源河。项目主要的风险物质为白酒,主要成分为乙醇,低毒性,含有乙醇的消防废水直接排入河道中,会导致河道中 SS、COD 等污染物浓度增加,水体污染加重,水质变差。

2) 火灾爆炸产生烟气对大气环境的影响

原酒储罐如发生火灾爆炸事故,将产生大量的一氧化碳和二氧化碳等刺激性、有毒的气体,对空气环境将造成污染,一氧化碳为毒性物质,经人呼吸进入肺部,被血液吸收后能与体内血红蛋白结合成一氧化碳-血红蛋白。容易造成低氧血症,从而导致人体组织缺氧。当大气中的一氧化碳浓度达到 70~80ppm以上时,人在接触几小时后,一氧化碳-血红蛋白含量为 20%左右时,就会引起中毒;当含量达到 60%时,即可因窒息而死亡。一旦发生乙醇火灾爆炸,其周围环境温度较高,辐射热强烈,热辐射强度与发生火灾的时间成正比,时间越长,热辐射越强。

5.2.7.5 风险防范措施分析

实践证明,许多环境污染事故平时只要提高警惕,加强管理和防范是完全可以避免的。因此项目首要的是加强事故防范措施的宣传教育,防止风险事故的发生。此外应根据环评及实际生产情况对安全事故隐患进行调查登记,对企业的安全措施常抓不懈,将本项目风险事故的发生概率控制在最小范围内。

(1) 白酒泄漏事故风险防范措施

- 1)严格执行进厂设备、备件、材料的质量检查验收制度,防止不合格设各件、材料进入生产过程使用,消除设备本身的不安全因素。
- 2)可燃液体金属管道除需要采用阀栏连接外,均应采用焊接连接。沿地面或低支架敷设的管道,不应环绕工艺装置或罐区四周布置。管道横穿道路时,应敷设在管涵或套管内。
- 3)该项目白酒储罐区应设防火堤,储罐的基础、防火堤、隔热层均应采用非燃烧材料,罐组内不应布置与其无关的管道。防火堤内的有效容量不应小于最大罐的容量:防火堤应能承受所容纳液体的静压,且不应渗漏,应在防火堤的不同方位上设置两个以上的人行台阶或坡道。
- 4) 白酒储罐应设防日晒的固定式冷却水喷淋系统或其他设施,白酒储罐应设阻火器和呼吸阀,其顶板与包边角钢之间的连接,应采用弱顶结构。
 - (2) 天然气泄漏事故风险防范措施
- 1)建设单位应由有资质单位对天然气管道进行设计,购买符合国家标准的设备。
- 2) 天然气管道设立紧急关断系统,厂区内设安全泄放系统,当系统出现超 压时,通过设在系统中的安全阀或手动放空阀,自动或手动放空。
- 3)对生产中可能发生泄漏的设备和工作区域设立安全警示标志。在可能发生天然气泄漏或积聚的场所应按照《石油化工企业可燃气体和有毒气体检测报警设计规范》(SH3063-1999)的要求设置可燃气体报警装置。
- 4) 工作人员严禁携带火柴、打火机等火种进入生产区内,生产区内严禁吸烟;
- 5)提高操作、管理人员的业务素质,加强其岗位培训,操作人员岗位培训 合格者方可上岗;
- 6)加强对输送管道的日常管理和检修。定期对输气管道、阀门和连接法兰等容易发生泄漏的部位进行检查,发现轻微泄漏事故或怀疑有泄漏时,应立即进行维修。
 - (3) 废矿物油泄漏事故防范措施
 - 1)公司应设置专门的环保管理人员负责危废暂存间的日常工作。

- 2)项目危废暂存间按照《危险废物贮存污染控制标准》及其修改单的相关规定,应做耐腐蚀、防渗漏处理,防渗层为至少 1m 厚粘土层或 2mm 厚人工材料(防渗系数<10-0cm/s),保证地面无裂痕。在危险废物贮存处周围设置围堰。危险废物应按类别分别放置在专门的收集容器,分区分类在危废暂存间暂存,有危险废物识别标志、标明具体物质名称,并设置危险废物警示标志。
- 3) 危废暂存间内应设置备用贮存容器,以及清扫工具,便于贮存容器破损时可及时进行转移:设置围堰将泄露的危险物质控制在一定范围内:
 - 4) 严禁火源进入危险废物暂存库,在危险废物暂存库附近不准有明火;
 - 5) 建立完善的消防系统,配套一定数量的干粉灭火器和消防沙。
 - (4) 次氯酸钠泄漏事故防范措施
- 1)根据次氯酸钠溶液(有效氯=5%)的危险特性,放置于适当的环境条件中保存,密闭操作,注意通风,远离高热。操作尽可能机械化、自动化。操作人员必须经过专门培训,阅读并了解所有预防措施。按要求使用个体防护装备。严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(全面罩),穿橡胶耐酸碱服,戴橡胶耐酸碱手套。远离易燃、可燃物。防止蒸气泄漏到工作场所空气中。避免与还原剂、酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。工作场所不得进食、饮水。
- 2)次氯酸钠溶液(有效氯=5%)存放地设置明显警示标识,地面进行防渗、防腐处理等防范措施。在次氯酸钠溶液(有效氯=5%)储存区 20m 内,严禁堆放还原性、酸类物品:基本符合《建筑设计防火规范》(GB50016-2014)中的有关规定。
- (3) 加次氯酸钠间建筑物附近位置设有消火栓,全厂消防用水来自送水泵房自供水管,采用双回路供水。加氯系统配置有干粉灭火器和水雾喷淋:
- (4) 进入次氯酸钠溶液(有效氯=5%)等化学品贮存区域人员、机动车辆和作业辆,须采取防火措施。
 - (5) 事故废水环境风险防范措施
 - 1) 事故废水

本项目发生风险事故时,特别是发生火灾爆炸事故时,在进行消防灭火的 过程中会产生大量的消防废水,消防废水若直接排放至外环境将会产生严重的 水体污染事件;

为防止项目污水处理设施发生事故,废水直接排放至周边水体,厂区内建设 250m³事故水池,可满足《酿造工业废水治理工程技术规范》(HJ575-2010)中"事故池有效容积应大于发生事故时的最大废水产生量,或大于酿造工厂 24h的综合废水排放总量"。

2) 原酒泄漏

项目在基酒储罐四周设置围堰,用于基酒泄漏后收集暂存,防止基酒泄漏 后直接排放。

(6) 地下水环境风险防范措施

依据原料、辅料、产品的生产输送、储存、污水处理等环节,结合本项目 总平面布置情况,本项目厂区内对污水处理设施各池体和危废暂存间进行重点 防渗;酒糟暂存库、各生产车间及原料、产品库进行一般防渗,其余区域进行 简单防渗。

同时,建设单位在运营期按本环评报告的监测计划开展监测,能够有效发现非正常状况下的地下水污染影响。

5.2.7.6 环境风险事故应急预案

建设单位应根据《企业突发环境事件风险评估指南(试行)》(环办[2014]34号)、《关于印发<企业事业单位突发环境事件应急预案评审工作指南(试行)>的通知》(环办应急[2018]8号)等要求编制项目环境应急预案。应急预案的基本内容及编制要求如下:

(1) 企业基本情况介绍

详细调查企业所处的地理位置、周边环境、建设规模、产品方案、工艺特点、操作工况、贮存规模、总图布置、防护措施、区域水资源分布特点、气候情况等,附项目平面布置示意图、周边区域道路交通示意图和疏散路线以及事故发生后交通管制示意图。

(2) 环境污染隐患及其危害性对环境的影响

根据项目物料的物性、毒性、危害性、控制条件、贮量等,筛选风险因子,并明确应急保护目标,分析各功能单元潜在的事故类型、发生事故的单元、危险 物质向环境转移的可能途径和影响方式。

(3) 应急救援组织机构、组成人员和职责分配

提出应急救援组织机构设置要求,明确指挥机构的职责和人员组成。本项目必须对重大危险源登记建档,进行定期检测、评估、监控,成立以负责人为总指挥,分管生产负责人为副总指挥的风险事故应急救援队伍,指挥部下设办公室、工程抢救援组、医疗救护组、后勤保障组等相关单位。

(4) 应急响应

预案中应包括应急分级响应机制、应急响应程序、信息报送与处理、指挥 和协调、应急处置措施、应急监测、应急终止等内容。

(5) 应急联动

应急预案应当符合"企业自救、属地为主,分类管理,分级响应,区域联动"的原则,与所在地地方人民政府突发环境事故应急预案相衔接。

(6) 应急保障

预案中应包括资金保障、装备保障、通讯保障、人力资源保障、技术保障、 宣传等内容。

(7) 预案培训、演练、管理与更新

为验证应急预案的可操作性和合理性,同时增强各部门之间的相互协作能力,预案中应要求对各类可能发生事故进行培训和应急演练,从而确保预案的适时改进、更新。所有运作人员参与污染事故应急演习的时间间隔不得超过一年,并做好演练记录。

5.2.7.7 环境风险评价结论

根据上述风险评价分析,项目产生的环境风险事故影响程度小,但一旦发生事故,对周围环境、人身、财产有一定的影响,因此,建设单位应有高度的风险意识,实行全面严格的防范措施,做好事故预防,并制定出事故发生后的应急措施,防范于未然。

综上,项目只要加强风险防范管理,按照本评价的要求完善风险防范措施,制定有效的应急预案,并加强环境管理的前提下,项目的环境风险是可防控的。

5.2.7.8 风险评价自查表

本项目的环境风险评价自查表如下。

表 5.2-35 环境风险评价自查表

			表 5.2-35		<u>版评价目1</u>	<u> </u>			
<u>工</u> 作	作内容 				尼成情况	Γ.	Т		
	危险物	名称	原酒 (乙醇)	天然	气(甲烷)	废矿	物油	次氯酸钠	
	质	存在总量/t	4464		0.5	0.	.7	0.1	
		大气	500 m 范围内	人口	数 <u>0</u> 人	5 km	范围内。	人口数 48085人	
风险		人(每公里管段周边	200n	n范围内人	口数()	最大)	人	
调查	环境敏	地表水	地表水功能敏愿		F1□	F2	2□	F3 ⊘	
	感性	地衣小	环境敏感目标分	分级	S1□	S2	2□	S3 ☑	
		地下水	地下水功能敏愿	!这性	G1□	G2	2.2	G3□	
		地下小	包气带防污性	能	D1□	D2	2.2	D3□	
伽压	九十士	<i>Q</i> 值	$Q < 1 \square$		1≤ <i>Q</i> <10□	10≤Q <	<100 🗷	<i>Q</i> > 100□	
	及工艺 危险性	M 值	M1□		М2□	M.	3 □	M4 ☑	
ハシ	1) C. P.W. J. L.	P值	P1□		P2□	P.	3□	P4 ⊠	
环培	敏感程	大气	E1□		E2 ∠	Z E3□		Е3□	
小児	· 政恐性 度	地表水	E1□	E1□		I		E3 ☑	
	1×	地下水	E10	□ E2 ☑			Е3□		
	竟风险 替势	IV+ □	IV□		III□	II		Ιロ	
评值	介等级		一级□		二级口	三组	及 ∠	简单分析□	
	物质危 险性	有毒有害☑			易燃易爆✔				
风险 识别	环境风 险 类型		泄漏☑			火灾、爆炸引发伴生/次生污染物排放☑			
	影响途 径		大气☑		地表水☑			地下水☑	
事故	:情形分 析	源强设定方法	去 计算法□		经验估算	⊉法□	扌	其他估算法□	
		预测模型	SLAB□		AFTO:	X□		其他□	
风险	大气	建 加作 田	大	气毒怕	生终点浓度	-1 最	大影响剂	克围_m	
预测		顶侧结果	预测结果 大气毒性终点浓度-2 最大影响范围_m					克围_m	
与评	地表水		最近环境敏感目标 ,到达时间 h						
价	111. 		下游	昇厂区	边界到达时	付间 d			
	地下水		最近环境每	敢感目	 标,到	到达时间	<u>d</u>		
	I		= , , , , ,		· 				

工作内容	完成情况			
	1)制定企业环境风险事故应急预案。			
	2)强化风险意识、加强安全管理,严格按操作规程操作,避免或减轻由安全			
 重点风险防	事故引发的环境风险。			
単点八極的 范措施	3)制定严格的防火制度,设置干粉灭火器等消防措施,预防事故火灾的发生。			
↑ (G.1日 NG	4)要积极贯彻"预防为主,防消结合"的消防方针,应根据检修情况和季节变化,			
	拟定消防工作计划,进行经常性的消防宣传教育、在训练场地结合事故预想进			
	行演练。			
	拟建项目主要内容为原酒生产与储存,经前文分析,项目环境风险主要来自物			
评价结论与	料渗漏。针对上述风险,企业制定了相应的环境风险应急措施,项目在自动控			
建议	制系统和相应的备用设备齐全,以及风险防范措施落实到位的前提下,项目的			
	风险事故水平是可以接受的。			
	注:"□"为勾选项,""为填写项。			

6. 环境保护措施及其可行性论证

6.1 施工期环境保护措施及可行性分析

根据现场勘查,本项目酿造四、五、六车间已基本改建完成,灌装车间已基本建设完成;工程施工内容主要在厂区内现有二车间内拆除现有窖池,改建为地缸,拆除现有办公化验用房改建为酿造七车间;施工时间约2个月,施工期较短。施工过程中仅有噪声和少量固体废弃物产生。根据项目施工特点,施工期主要采取以下防治措施:

1.施工扬尘

- (1)施工时,应根据《建设工程施工现场管理规定》设置施工标志牌,并标明当地环境保护主管部门的污染举报电话。
- (2)施工工地要做到"6个100%",即施工工地周边100%围挡、物料堆放100%覆盖、出入车辆100%冲洗、施工现场地面100%硬化、拆迁工地100%湿法作业、渣土车辆100%密闭运输。
 - (3) 禁止施工现场搅拌混凝土,全部采用预拌商品混凝土。
- (4) 进出施工现场的运输车辆要采用密闭车斗保证物料不遗撒外漏;施工物料运输车辆要合理选择运输路线,尽可能避开集中居民区和主要交通干道,按照批准的路线和时间进行物料运输。
- (5) 土方的开挖、运输和填筑等施工过程,遇到干燥、易起尘的土方工程作业时,应辅以洒水压尘,尽量缩短起尘操作时间。遇到四级或四级以上大风天气,应停止土方作业,同时作业处覆盖防尘网。
- (6)施工过程使用的水泥、石灰、砂石、铺装材料等易产生扬尘的建筑材料,应密闭存储。
- (7)施工过程产生的弃土及建筑垃圾应及时清运,如场区内堆存时间较长, 应覆盖防尘网并定期喷水压尘。

采取以上措施后, 本项目施工期扬尘对周围环境影响较小。

2.施工废水

(1) 施工废水

施工废水主要为设备冲洗水,主要污染物为悬浮物,产生量较少,经集水

沉淀池收集沉淀后用于施工现场洒水抑尘,不外排,对周围环境的影响较小。

(2) 施工人员生活污水

本项目施工期施工人员为周边村民,不在厂内设置施工营地,且施工人员数量较少。施工期会产生少量生活污水,经厂区内现有污水管道进入污水处理站,无生活污水外排。

采取以上措施后,本项目施工期废水对周围环境影响较小。

- 3.噪声防治措施:
- (1)运输建筑材料及建筑垃圾的车辆要选择合时的时间、路线,运输车辆行驶路线尽量避开居民点和环境敏感点;
 - (2) 在装卸施工设备时规范操作,轻拿轻放;
 - (3) 合理安排施工时间。
 - 4.固废防治措施

对于施工期产生的固体废物进行分类收集,可回收利用的部分如木材、废 气包装材料等则可以外售回收,拆除的建筑垃圾全部由环卫部门统一收集清运 至指定地点。

6.2 营运期环境保护措施及可行性分析

6.2.1 废气污染防治措施及可行性分析

6.2.1.1 废气治理措施汇总

本项目废气治理措施情况见下表。

排放形 污染 收集效 处理效 工序 环保治理措施 物 率 率 式 卸粮工 粉尘 设2个侧吸罩进行收集 90% 99% 有组织 序 进入1套脉冲 布袋除尘器 清理筛 粉尘 管道负压收集 100% 99% 有组织 分 粉碎工 粉尘 管道负压收集后讲入1套布袋除尘器 100% 99% 有组织 序 烟尘、 燃气锅 燃用天然气,采用低氮燃烧技术 SO_2 / 有组织 炉 NO_X 废气收集后进入生物滤池除臭系统进行处 95% 有组织 污水处 NH_3 95%

表 6.2-2 废气治理措施汇总表

工序	污染	环保治理措施	收集效	处理效	排放形
上/广	物	外体石埕11地	率	率	式
理站	H_2S	理,去除效率 95%,处理后经 15m 排气筒			
		排放;周围加强绿化,喷洒生物除臭剂			
酿造车	有机	加强车间通风	,	,	无组织
间	废气	加强平凡地风	/	/	九组织
酒糟库	恶臭	喷洒生物除臭剂除臭	/	/	有组织
食堂油	油烟	进入油烟净化装置处理后经管道排放	,	80%	无组织
烟	和为四	近八佃焖伊化农直处垤归经官垣排放 	/	80%	九组织
道路运	颗粒	厂区内地面进行硬化并进行清扫、洒水,以	,	,	无组织
输扬尘	物	减少道路扬尘	/	/	儿组织

6.2.1.2 治理措施可行性分析

(1) 卸粮、清理筛分和粉碎过程粉尘

本项目高粱、玉米卸料过程产生的粉尘采用侧吸罩进行收集,收集效率90%,与清理筛分过程负压收集的粉尘一起进入一套脉冲布袋除尘设备,除尘效率99%,设计风机风量14000m³/h,除尘器出口颗粒物≤10mg/m³,处理后的粉尘通过1根15m高排气筒P1排放;

2 台粉碎机粉碎过程产生的粉尘经管道负压收集后,分别引至 1 套脉冲布袋除尘器进行处理,处理后的粉尘通过 1 根 22m 高排气筒 P2 排放,设计风机风量 16000m³/h,除尘器出口颗粒物≤10mg/m³,可以满足《大气污染物综合排放标准》(GB16297-1996)的二级标准。

袋式除尘器通常包含多组密闭集尘单元,其中包含多个由龙骨支撑的滤袋。烟气由袋式除尘器下半部进入,然后由下向上流动,当含尘烟气流经过滤袋时,粒状污染物被滤布过滤,并附着在滤布上。滤袋清灰方法通常有下列三种方式:反冲洗空气清除法、摇动清除法及脉冲喷射清除法,清除的粉尘掉落至灰斗并被运走。在袋式除尘器的设计上,气布比对投资费用及去除效率有决定性的影响。

袋式除尘器是利用粘附在纤维上的粉尘层(初层)通过扩散、惯性、过滤等作用除掉含尘气体中的粉尘。由于它具有效率高、性能稳定可靠、操作简单等特点,因而获得越来越广泛的应用。袋式除尘器的有效捕集粒径大于 0.2μm, 其总除尘效率一般可达 99%以上。

经比选,袋式除尘器除尘效率较高,是目前工艺颗粒物的主流除尘工艺。

根据建设单位提供的除尘器的技术参数资料可知,脉冲式布袋除尘器的净化效率可达 99%以上,具有占地面积小、净化效率、结构紧凑、滤袋寿命长、运行稳定可靠、维护保养方便、处理含尘热态气体温度可达 120℃左右(根据滤袋材质的不同,可以承受更高温度),是一种成熟的比较完善的高效除尘设备。

项目布袋除尘器技术参数见下表。

项目	单位	技术参数
1、卸粮、清理筛分工序		
入口废气量	m ³ /h	14000m ³ /h
烟气流速	m/min	≤0.6
滤袋材质	/	涤纶针刺毡
过滤面积	m ²	$400m^{2}$
出口颗粒物浓度	<u>≤</u>	10mg/m^3
2、粉碎工序		
入口废气量	m ³ /h	16000m ³ /h
烟气流速	m/min	≤0.6
滤袋材质	/	涤纶针刺毡
过滤面积	m ²	500m ²
出口颗粒物浓度	<u> </u>	10mg/m ³

表 6.2-3 除尘器主要设计参数

综上,本项目选用袋式除尘器回收治理原料粉尘是适宜的,粉尘排放浓度可控制在 10mg/m³以,下可以满足《大气污染物综合排放标准》(GB16297-1996)的二级标准。

(2) 燃气锅炉废气

本项目生产用蒸汽新增 1 台 10t/h 燃气蒸汽锅炉提供,燃料为管道天然气。燃气锅炉由于天然气的理化特性导致其主要的污染物为氮氧化物。目前主要通过改进燃烧技术来降低燃烧过程中 NOx 的生成与排放,其主要途径有:

①烟气再循环法:在锅炉的空气预热器前抽取一部分低温烟气直接与送风混合后送入炉内,这样不但可降低燃烧温度,而且也降低了氧气浓度,进而降低了 NOx 的排放浓度。经验表明,烟气再循环率为10-15%时,燃气炉的 NOx 排放浓度可降低40%以上,当采用更高的烟气再循环率时,燃烧会不稳定,未完全燃烧热损失会增加。烟气再循环法和其它低 NOx 燃烧技术配合使用,使得

NOx 排放更低。

②二段燃烧法

从 NOx 的生成机理分析表明,燃烧时只要能避开 NOx 生成量最大时的空气过量系数,就可以大幅度减少 NOx 的生成量。尤其是当过量空气系数低于1.0 时,效果更为明显。使燃料过浓燃烧对控制温度型 NOx 和燃料型 NOx 都有明显的效果。第一阶段燃烧中,只将总燃烧空气量的 70%~75%(理论空气量的 80%)供入炉膛,使燃料在缺氧的富燃料条件下燃烧,能抑制 NOx 的生产,第二阶段通过足量的空气使剩余燃料燃尽,此段中氧气过量,但稳定低,生成的 NOx 也较少,该法既能有效的控制 NOx 的生成,又保证完全燃烧,可使得烟气中的 NOx 减少 25%~50%。

因此在采取低氮燃烧技术后,本项目燃气锅炉燃烧废气中烟尘、SO₂、NOx 排放浓度均可以满足《锅炉大气污染物排放标准》中表 3 新建燃气锅炉大气污染物排放浓度限值的要求,通过一根 8m 高排气筒(P4)排放。。

(3) 酿造车间有机废气

酿造车间内在蒸煮、摊晾、发酵过程等中会有有机废气产生(主要为乙醇), 均为无组织排放。在车间生产过程采用通风排除手段加强车间通风,可有效稀 释车间挥发产生的无组织有机废气,对周围环境的影响较小。

(4) 酒糟库恶臭

酒厂酿造车间若不及时清理,酒糟渣长期堆积会发生腐坏,产生恶臭,这 是食品企业不允许的。项目拟建设钢结构酒糟库,并采取"三防"措施,酒糟产 生的恶臭采用生物除臭剂除臭,可避免腐坏恶臭产生,对周围大气环境影响很 小。

(5) 污水处理站恶臭

本项目污水处理设施的厌氧池、缺氧池、好氧池、沉淀池和污泥干化池采用轻质有机玻璃钢盖或加罩方式进行全封闭,主要恶臭产生源(格栅间、调节池、AO池和污泥处理间)构筑物预留臭气收集口,并安装集气管,通过离心风机将废气收集,一起进入生物滤池除臭系统进行吸附,收集效率不低于95%,去除效率可达到95%,处理后NH₃和H₂S排放量可满足《恶臭污染物排放标准》

(GB14554-93) 中表 2 恶臭污染物排放标准值限值要求,通过一根 15m 高排气筒 P5 排放。

治理措施可行性分析:

生物滤池工艺原理是: 臭气经集气系统负压收集后,通过离心风机的抽送,被直接导入洗涤—生物滤床除臭设备。前段洗涤床具有有效除尘、调节臭气的湿温度、削减峰值浓度冲击、去除部分水溶性物质等功能。在后段的多级生物过滤床内,通过气液、液固传质由多种微生物将致臭物质降解。工艺流程如下图:

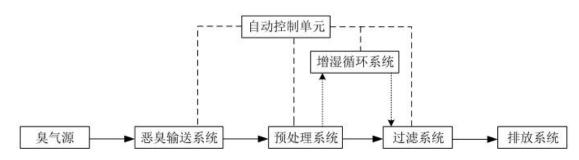


图 6.2-1 生物滤池除臭工艺

生物滤池法除臭工艺流程简单,投资较低,经济实用,在国内已有10年以上的处理经验,已有多处污水厂采用此种工艺处理臭气,运行效果良好。经国内众多的污水厂除臭实例来看:处理效果较好。综合考虑投资、用地面积、工艺成熟度。

本项目拟采用填料塔生物滤池:

液气比: 1-10L/m³:

喷淋密度: 6-8m³/m².h

空塔气速: 0.5-1.2m/s:

堆肥滤池: 55-65%;

孔隙率 35-50%;

臭气停留时间: 30-60s:

臭气进气浓度: 0.01-0.5g/m³

去除能力: H_2S : $60-100g/m^3.h$, NH_3 : $80-130g/m^3.h$, 治理效率 95%以上; 采取上述措施后,污水处理站运行排放的 NH_3 和 H_2S 排放量可满足《恶臭污染物排放标准》(GB14554-93)中表 2 恶臭污染物排放标准值限值要求。因

此,本项目选用生物滤池除臭系统处理污水处理站产生的恶臭是适宜的,措施可行。

(5) 食堂油烟

餐厅油烟收集后经油烟净化器(风量 2000m³/h,净化效率 80%)处理,处理后排放量为 0.003t/a,排放浓度 1.67mg/m³。油烟经净化处理后通过专用烟道引至屋顶进行排放,排放浓度能够满足《饮食业油烟排放标准(试行)》(GB18483-2001)中标准限值 2mg/m³。

(6) 车辆运输扬尘

- 1)要求项目建设单位对厂区内地面进行硬化并进行清扫、洒水,以减少道路扬尘。
 - 2)运输车辆加盖篷布,并严禁超载。
 - 3) 在沿村道路上要限速行驶,以降低二次扬尘对村庄造成的影响。
- 4)厂内非道路移动机械达到国三及以上排放标准或使用新能源机械比例不低于 50%。

采取措施后,运输产生的扬尘可减少90%,运输起尘量约为0.025t/a。

道路运输环保要求:

公路运输使用达到国六及以上排放标准的重型载货车辆(含燃气)或新能源汽车比例不低于 50%。厂区运输车辆达到国六及以上排放标准(含燃气)或使用新能源汽车比例不低于 50%。

厂内非道路移动机械主要为叉车,根据《非道路移动机械污染防治技术政策》,使用的叉车到达国家第三阶段排放控制水平,使用的叉车优先采用《非道路移动机械污染防治技术政策》表 1 装用压燃式发动机的非道路移动机械排放控制技术。厂内非道路移动机械达到国三以上排放标准或使用新能源机械。

6.2.1.3 与排污许可技术规范符合性

根据《排污许可证与核发技术规范酒、饮料制造工业》(HJ1028-2019)相 关要求,对本项目废气类别、排放形式及污染治理设施进行符合性分析,具体 见下表。

			> · · · · · · · · · · · · · · · · · · ·			
			技术规范要求		本项目	符合
污染源	污染物	排放	治理措施	排放	治理措施	性
		形式	<u>但</u> 埋111.地	形式	7日生1日旭	江
 原料粉碎		有组	除尘装置(旋风除尘、	有组		
系统	颗粒物	织	袋式除尘、湿式除尘	织	袋式除尘	符合
71-71		-71	等)	-/\		
			加罩或加盖,或者投放		加罩全封闭, 气体	
综合污水	恶臭气	无组	除臭剂,或者集中收集	有组	收集后进入生物滤	符合
处理站	体	织	恶臭气体到除臭装置	织	池进行处理,经排	111日
			处理后经排气筒排放		气筒排放	
酒糟堆场	恶臭	无组	覆盖,及时清理堆场	无组	及时运至酒糟库,	符合
相信性場	心哭	织	復皿,及門相垤堆物	织	日产日清	111 🗖

表 6.2-4 本项目废气排放与排污许可技术规范符合性分析

综上分析,本项目废气污染防治措施齐备,针对性强,均为目前国内普遍 采用的成熟工艺,能够满足本项目废气处理的需求,且投资适中,具备环境、 技术、经济可行性。

6.2.2 废水污染防治措施

6.2.2.1 废水治理措施汇总

本次评价将全厂产生的生活污水、生产废水和初期雨水考虑在内,项目废水治理措施情况见下表。

废水类	别	污染物	环保治理措施	排放去向
生活污	水	COD、BOD ₅ 、 NH ₃ -N、SS	生活污水经化粪池处理后和生产废水进入厂区污水处理站,采用"格栅间+调	祁县鸿宇市
生产废	水	COD、BOD ₅ 、 NH ₃ -N、SS	节池+气浮池+IC 厌氧反应器+ AO/AO/AO +MBR 膜+混凝沉淀+过滤+ 消毒"工艺	政污水处理 有限公司
初期雨	水	COD、BOD ₅ , SS	初期雨水量为 443.99m³,环评要求建设 500m³ 初期雨水收集池收集初期雨水,收集后的初期雨水用于厂区绿化和厂 区洒水降尘。	不外排

表 6.2-5 废水治理措施汇总表

6.2.2.2 生产废水治理措施可行性分析

(1) 废水来源

本项目处理工艺选用"格栅间+调节池+气浮池+IC 厌氧反应器+AO/AO/AO+MBR 膜+混凝沉淀+过滤+消毒"。工艺流程选取合理。污水处理系

统工艺流程主要包括集水井、格栅、调节池、气浮池、IC 反应器、AO 池、MBR 池、混凝沉淀池、石英砂过滤器、活性炭过滤器、污泥浓缩池、清水池、事故池等。经处理达标后废水排入污水管网进入祁县鸿宇市政污水处理有限公司。

(2) 处理工艺

根据污水产生来源及污水水质情况分析,污水有机物浓度较高,此外氨氮含量较高,由于间歇排放,水质波动大等诸多优点,根据该种污水的性质,工艺流程为"格栅间+调节池+气浮池+IC 厌氧反应器+ AO/AO/AO +MBR 膜+混凝沉淀+过滤+消毒"

污水处理系统工艺流程主要包括集水井、格栅、调节池、气浮池、IC 反应器、AO 池、MBR 池、混凝沉淀池、石英砂过滤器、活性炭过滤器、污泥浓缩池、清水池、事故池等。

a.集水井

收集、储存污水,减少流量变化给处理系统带来冲击。

b.格栅

去除低浓度生活污水中较大的悬浮物和漂浮物,防止水泵阻塞,保证后续处理系统的正常运行。

c.调节池

由于废水排放过程中废水量及排入杂质的不均匀性,使得废水的流量或浓度,在一昼夜内有较大范围的变化。为使处理构筑物正常工作,不受废水高峰流量或浓度变化的影响,需要设置调节池来调节水量和水质,收集企业内污水并提升污水,满足后续处理设施水力要求。

d.气浮池

利用高度分散的微小气泡作为载体粘附于废水中污染物上,使其浮力大于重力和上浮阻力,从而使污染物上浮至水面,实现悬浮物或胶体物质的分离。 采用气浮装置代替传统的沉淀池,将为后续的生化阶段提供更好的反应环境。

e.IC 反应器

由于废水中的有机污染物、悬浮物浓度均较高,直接进行好氧处理难以达到去除效果,因此采用了厌氧污泥床反应器,能够适应高浓度悬浮物的冲击。

废水进入厌氧发酵装置进行发酵,让厌氧微生物在无氧和适宜的温度及 pH 值条件下,利用废水中的有机物进行新陈代谢,分解有机物产生 CH_4 、 CO_2 和 少量的其他气体,使高浓度的有机废水得以初步净化。

厌氧器采用全混流式发酵罐,主要适应较高悬浮物的污水处理,厌氧罐的 出水一部分回流,与进水混合后进入厌氧罐内底部向上流动,并在罐内底部形成一个较大范围的搅动混合区域,废水和悬浮物上升,使污泥颗粒在整个罐内 基本均匀分布,保证发酵效果。

f.三级 A/O 池

经过厌氧处理后的废水其可生化性较好,流入好氧系统进行进一步降解, 主要去除 COD、BOD、氨氮、总氮、总磷等有机物。

A/O 法可同步除磷脱氮机制由两部分组成:一是除磷,污水中的磷在厌氧状态下(DO<0.3mg/L)释放出聚磷菌,在好氧状况下又将其更多吸收,以剩余污泥的形式排出系统。二是脱氮,缺氧段要控制 DO<0.7mg/L,由于兼氧脱氮菌的作用,利用水中的 BOD 作为氢供给体(有机碳源),将来自好氧池混合液中的硝酸盐及亚硝酸盐还原成氮气逸入大气,达到脱氮的目的。

g.MBR 池

MBR 工艺是高效膜分离技术与生物处理组合相结合而成的新型污水处理 技术。以膜分离过程取代生物处理工艺的重力沉降过程,既能深度氧化废水中 的有机物,又能过滤出符合排放标准的清水,保留生物体,延长生物体停留时 间,生化效果更好。

h.混凝沉淀池

进行固液分离,以去除生化池出水中夹带的老化生物膜、微生物等固体悬浮物、漂浮物。

i.过滤池

进行固液分离,过滤去除生化池出水中夹带的老化生物膜、微生物等固体 悬浮物。

i.清水池

暂时储存处理达标的废水,备回用或反冲洗滤池。

k.污泥处理系统

混凝沉淀池、气浮池、IC 反应器收集的污泥排入污泥浓缩池进行浓缩,浓缩池上清液自流回集水池再进行系统处理,其浓缩的污泥由污泥输送泵泵送至板框压滤机进行脱水处理,压滤机滤液排入集水池,干泥外运处置。

1.化学药品投加系统

废水处理的工艺流程中需要投加化学品,主要是污水 PAC、污水 PAM、污泥 PAM。在废水进入混凝沉淀池后要投加混凝剂 PAC 和 PAM,目的是提高悬浮物的絮凝效果。为使污泥脱水后干度≥40%,在污泥脱水过程中需投加阳离子 PAM,以满足干度。

污水处理工艺流程图如下。

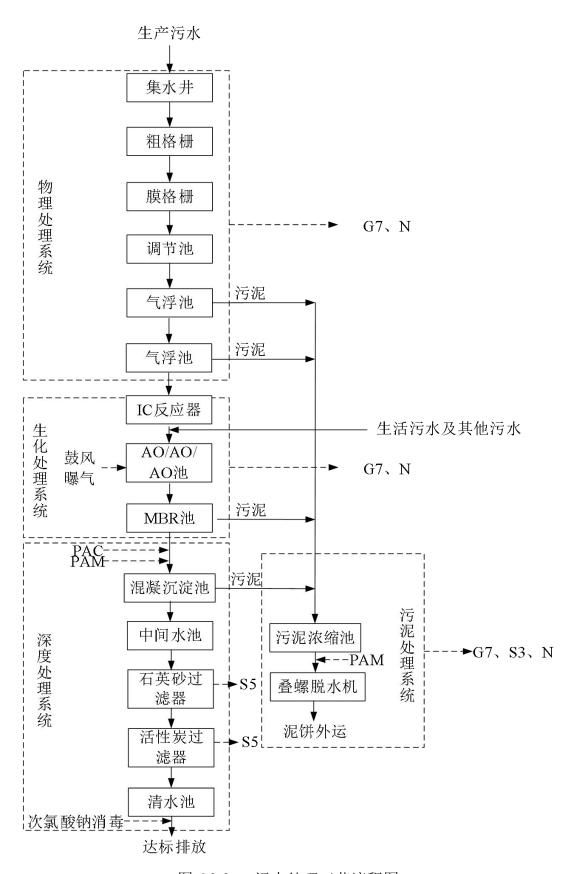


图 6.2-2 污水处理工艺流程图

(4) 各主要工艺段处理效率

项目 序号		处理单	元	COD _{Cr}	BOD ₅	SS	NH ₃ -N	总磷	总氮
			进水	11761	5140	486	82	94	120
1	物理	里处理	出水	10585	4626	146	74	84	108
			去除率(%)	10%	10%	70%	10%	10%	10%
			进水	10585	4626	146	74	84	108
		IC	出水	1058	462.61	116.72	14.80	16.84	21.58
	# -		去除率(%)	90%	90%	20%	80%	80%	80%
	生化	AO/AO/AO	进水	1058	463	116.72	14.80	16.84	21.58
2	处		出水	212	69	93.37	3.70	1.68	5.40
	理		去除率(%)	80%	85%	20%	75%	90%	75%
	性	MBR	进水	212	69.39	93.37	3.70	1.68	5.40
			出水	42	10.41	74.70	1.48	0.34	2.16
			去除率(%)	80%	85%	20%	60%	80%	60%
	深		进水	42.34	10.41	74.70	1.48	0.34	2.16
3	度	沉淀池、过	出水	38.10	9.37	7.47	1.04	0.30	1.94
3	处理	滤池	去除率(%)	10%	10%	90%	30%	10%	10%
4	出力	· 大标准		<40	<30	< 50	<2.0	<0.4	<20

表 6.2-6 各主要工艺段处理效率一览表单位: mg/L

(6) 处理效率分析

采取上述措施后,废水水质满足《污水排入城镇下水道水质标准》(GB/T 31962-2015)A级标准限值,,废水经处理后通过污水管网进入祁县鸿宇市政污水处理有限公司处理,在经济技术上是可行的。

6.2.2.3 非正常工况防范措施

- (1)污水处理站出水口设有在线监测系统,以便时刻监测进、出水的水质情况,控制和避免发生恶性事故。
- (2) 当污水系统某一构筑物出现运行异常,必须立即予以排除,必要时需操作人员进入池下操作。
- (3)当污水处理站出现事故,必要时其排水进入事故应急池暂存。本项目设置了250m³的事故池,大于厂区内24h的综合废水排放总量,可保证本项目事故废水不外排。
 - (4) 对于污水输送管道,要求采取管壁加厚、稳管、防腐层加强等措施,

并采取有效的水工防护措施,且企业在管道施工中应设置检查口,应定期对管道进行检修,杜绝因管道老化、开裂等问题造成的污水外泄等现象发生。

- (5)建立污水处理厂运行管理和操作责任制度,加强职工操作技能培训, 建立和严格执行污水处理厂运行管理制度和操作责任制度,杜绝操作事故隐患。
 - (6) 加强输水管线的巡查,及时发现问题、解决问题。
- (7)建筑物设计时应考虑维修清理的措施,设备应有符合要求的备用率。同时加强处理设施的维护和管理,提高设施的完好率。确保设备的正常运转,减少事故性污水排放几率。

6.2.2.4 与排污许可技术规范符合性

根据《排污许可证与核发技术规范酒、饮料制造工业》相关要求,对本项目废水类别、排放去向及污染治理设施进行符合性分析,具体见下表。

	<u> </u>	H 105/11/11/10		רו בו נין ביידיטעי	- 7J - 1/1	
		技才	 党规范要求	本	项目	符合
污染源	污染物	排放去	治理措施	排放去	 治理措施	性
		向	111 = 24 70	向	18,21,70	Ĺ
	化学需氧量,氨氮					
	(NH ₃ -N),总氮(以			排至厂		
生活污	N计),总磷(以P	间接排	,	内综合		符合
水	计), pH值, 色度,	放	/	污水处		111 口
	悬浮物,五日生化需			理站		
	氧量				"格栅间+调	
			预处理:除油、		节池+气浮	
			沉淀、过滤等;		池+IC 厌氧	
			二级处理:好		反应器+	
			氧、水解酸化-		AO/AO/AO	
厂内综	pH 值、悬浮物、化学		好氧、厌氧-好	祁县鸿	+MBR 膜+	
合污水	需氧量、五日生化需	 间接排	氧、兼性-好氧、	宇市政	混凝沉淀+	
处理站	而	放	氧化沟、生物转	污水处	过滤+消毒"	符合
的综合	戦車、気気、心気、 总磷、色度		盘等;	理有限	工艺	
污水	心呼、口又		深度处理:高级	公司		
			氧化、生物滤			
			池、过滤、混凝			
			沉淀(或澄清)、			
			活性炭吸附等。			

表 6.2-7 本项目废水排放与排污许可技术规范符合性分析

综上分析,本项目废水治理措施均为目前国内普遍采用的成熟工艺,能够 满足本项目废水处理的需求,措施可行。

6.2.3 地下水污染防治措施及可行性分析

本项目地下水污染防治措施按照"源头控制、分区防控、污染监控、应急响应",重点突出饮用水水质安全的原则。

(1) 源头控制

本项目污染源头控制主要选择先进、可靠的工艺技术和较为清洁的原辅材料,对生产过程产生的废物进行治理或者回用,以尽可能从源头上减少污染物排放。在项目运营过程加强生产管理,防止生产过程中跑、冒、滴、漏造成的废水四处漫延渗漏地下,对管道、设备、污水储存及处理构筑物进行定期检漏监测及检修,强化各相关工程的转弯、承插、对接等处的检修,将污染物跑冒滴漏降到最低限度。

(2) 分区防控

根据《环境影响评价技术导则-地下水环境》(HJ 610-2016)的划分原则,依据原料、辅料、产品的生产输送、储存、污水处理等环节,结合本项目总平面布置情况,本项目厂区分为重点防渗区、一般防渗区和简单防渗区。

①重点防渗区

重点防渗区指污染地下水环境的物料或污染物泄漏后不易及时发现和处理的区域或部位。本项目重点防渗区主要为污水处理设施各池体、污水管道、事故水池、初期雨水收集池和危废暂存间。

②一般防渗区

一般防渗区指裸露于地面的生产功能单元,污染地下水环境的物料或污染物泄漏后,可及时发现和处理的区域和部位。本项目一般防渗区主要为酒糟暂存库、生产车间及原料、产品库。

③简单防渗区

简单防渗区指没有物料或泄漏后不会对地下水环境造成污染的区域或部位。除上述两类防渗区之外的厂区其他部分,按相关工程规范进行一般地面硬化即可。

防渗分区	区域	防渗措施	防渗技术要求	备注
	污水处理设施	防渗钢筋混凝土,池		己建
	各池体	内表面涂刷水泥基		
	事故水池、初期	渗透结晶型防渗涂		
重点防渗 区		料,渗透系数	等效黏土防渗层	新建
	的八八大米包	$\leq 1.0 \times 10^{-11} \text{cm/s}$	$Mb \ge 6.0m$,	
		防 渗 混 凝 土	$K \le 1 \times 10^{-7} \text{cm/s}$	
	合 废	+2mmHDPE 膜强化		新建
	旭及百行門	防渗,渗透系数		刺娃
		$\leq 1.0 \times 10^{-10} \text{cm/s}$		
		黏土基础防渗+混凝	等效黏土防渗层	
	酒糟暂存库	土地面,滲透系数	Mb≥1.5m,	新建
一般防渗		$\leq 1.0 \times 10^{-7} \text{cm/s}$	$K \le 1 \times 10^{-7} \text{cm/s}$	
区	夕	黏土基础防渗+混凝	等效黏土防渗层	
		土地面,滲透系数	Mb≥1.5m,	已建
		$\leq 1.0 \times 10^{-7} \text{cm/s}$	$K \le 1 \times 10^{-7} \text{cm/s}$	
简单防渗 区	办公生活区及 道路	一般地面硬化	一般地面硬化	已建
	重点防渗 区 一般防渗	方水处理设施 各池体 事故水池、初期 雨水收集池 危废暂存间 一般防渗 区 各生产车间及原料、产品库 简单防渗 办公生活区及	方水处理设施 方水处理设施 内表面涂刷水泥基 渗透结晶型防渗涂 粉透结晶型防渗涂料,渗透系数 ≤1.0×10 ⁻¹¹ cm/s 防 滲 混 凝 土 +2mmHDPE 膜强化 防 滲 湧 透 系 数 ≤1.0×10 ⁻¹⁰ cm/s 黏土基础防渗+混凝 土地面,渗透系数 ≤1.0×10 ⁻⁷ cm/s 和土基础防渗+混凝 土地面,渗透系数 ≤1.0×10 ⁻⁷ cm/s 和土基础防渗+混凝 土地面,渗透系数 ≤1.0×10 ⁻⁷ cm/s 和土基础防渗+混凝 土地面,渗透系数 ≤1.0×10 ⁻⁷ cm/s 一般地面硬化	方水处理设施

表 6.2-8 本项目防渗分区一览表

(3) 污染监控措施

本次评价给出地下水污染监控计划,目的在于保护评价区内居民饮水安全, 对水质污染及时预警,并采取合理的补救措施。

①监测点位

设置1口背景值监测点(厂区内上游水井),下游设置1口污染扩散监测井(西厂界下游约480m处)。

监测项目:色度、总硬度、溶解性总固体、挥发酚、耗氧量、亚硝酸盐氮、 氨氮、氰化物、六价铬、砷、菌落总数、总大肠菌群、汞、铅、镉、铁、锰、 氟化物、氯化物、硝酸盐氮、硫酸盐、石油类共 22 项,同时记录井深、水位和 水温。

②监测频率

背景值监测点每年监测一次,扩散监测点每半年1次,委托有资质单位进 行水样采集与化验分析。

③地下水监测数据管理

监测结果应及时建立档案,并定期环保部门汇报,对于常规监测数据应该

进行公开,特别是跟周边居民用水安全相关的数据要定期张贴公示,如发现异常或者发生事故,应加密监测频次,改为每周监测一次,并分析污染原因,及时采取应对措施。

(4) 应急响应

为了及时准确地掌握项目周围地下水环境污染状况,建议建立地下水监控体系,及时发现污染、及时控制。加强地下水水质的长期动态监测工作,做好应急预案,若发生泄漏事故,通过地下水监测井监测数据及反馈启动应急处置方案,及时发现地下水污染事故及其影响范围和程度,为启动地下水应急措施提供信息保障。

综上分析,建设项目场区地下水环境在落实好防污、防渗和跟踪监测措施 后,本项目的运行对地下水水质影响较小,项目的建设不会产生其他环境问题, 因此对地下水环境质量影响较小。

6.2.4 噪声污染防治措施

本项目主要噪声源来自自清理、粉碎、酿酒、锅炉房、灌装和污水处理等等设备作业机械噪声,水泵及风机的空气动力噪声。本项目主要从噪声源控制、噪声传播途径控制和个体防护三方面进行了隔声降噪:

- (1) 合理布局:主要产噪设备均布置在车间内,利用房间进行隔声;并尽量布置在中央,利用距离进行噪声衰减;
- (2)企业在选购设备时购置符合国家颁布的各类机械噪声标准的低噪声设备,对噪声污染较大的设备,如空压机、风机等,配置减振基础,安装隔声罩或消声器。
- (3)对于生产设备作业机械噪声,均布置在生产车间内,通过建筑阻挡可有效进行隔声,同时在生产运行中加强设备的维护,确保设备处于良好的运转状态,杜绝因设备不正常运转时产生的高噪声现象;
 - (4)加强人工作业过程中的管理,规范员工操作,避免不必要的噪声产生。
- (5)在全厂范围内搞好绿化,营造乔木、灌木和草皮相间的林带,以利吸 声降噪。

通过上述的治理措施后可有效降低噪声值 20dB(A)以上。经预测分析,在

采取以上措施后,本项目建成后四周厂界噪声可满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准,可实现达标排放,且项目噪声源距周围的环境敏感目标较远,不会对其产生明显不利影响。

综上分析,本项目从源头、传播等环节进行噪声防治,能够满足本项目噪 声防治需求,治理措施可行。

6.2.5 固体废物污染防治措施

6.2.5.1 一般固体废物处置措施分析

(1) 杂质粉尘 S1

本项目使用高粱为去壳后高粱,在卸料、除杂及粉碎过程收集的粉尘主要成分为高粱,为很好的饲料,直接出售给养殖场,用于家畜养殖。

(2) 酒糟 S2

酒糟是本项目产生的最大的副产物,酒糟中含有稻壳、麦糠及发酵后产生的有机物等,将酒糟暂存在至酒糟库,外售给附近养殖场作饲料。

(3) 污水处理站污泥 S3

本项目污水处理站产生的污泥经脱水后,定期清运至环卫部门指定地点倾倒,由环卫部门统一处置。

(4) 废离子交换树脂 S4

锅炉房软水制备产生的废离子交换膜由厂家定期进行回收并更换。

(5) 废过滤材料 S5

污水处理站废水深度处理系统过滤设备及原酒过滤设备使用的过滤材料, 石英砂和活性炭需交由厂家定期进行回收并更换。

综上所述,本项目产生的固体废物处置措施可行,不会对周边环境产生明显不利影响,不会造成二次污染。

6.2.5.2 危险废物贮存措施分析

本项目生产运营过程产生的危险废物主要为修配车间产生的废矿物油和化验室在白酒检测过程无机废液处理产生的残渣、残液及实验用品,本次改建拟在厂区内建设一座 10m² 的危废暂存间,定期交由有资质的单位处置,危险废物在站内暂存周期不超过一年。

根据《危险废物贮存污染控制标准》(GB18597-2001)及《危险废物转移 联单管理办法》(国家环境保护总局令第 5 号)的要求,本报告对项目产生的 危险废物的贮存、管理提出如下要求:

(1) 危险废物贮存库建设要求

贮存库内不同贮存分区之间应采取隔离措施。隔离措施可根据危险废物特性采用过道、隔板或隔墙等方式。在贮存库内或通过贮存分区方式贮存液态危险废物的,应具有液体泄漏堵截设施,堵截设施最小容积不应低于对应贮存区域最大液态废物容器容积或液态废物总储量 1/10(二者取较大者);用于贮存可能产生渗滤液的危险废物的贮存库或贮存分区应设计渗滤液收集设施,收集设施容积应满足渗滤液的收集要求。

贮存库内地面与裙脚应采取表面防渗措施;表面防渗材料应与所接触的物料或污染物相容,可采用抗渗混凝土、高密度聚乙烯膜、钠基膨润土防水毯或其他防渗性能等效的材料。贮存的危险废物直接接触地面的,还应进行基础防渗,防渗层为至少 1 m 厚黏土层(渗透系数不大于 10-7 cm/s),或至少 2 mm 厚高密度聚乙烯膜等人工防渗材料(渗透系数不大于 10-10 cm/s),或其他防渗性能等效的材料。同一贮存设施宜采用相同的防渗、防腐工艺(包括防渗、防腐结构或材料),防渗、防腐材料 应覆盖所有可能与废物及其渗滤液、渗漏液等接触的构筑物表面;采用不同防渗、防腐工艺应分别建设贮存分区。

- (2) 危险废物管理要求:
- a.建危险废物贮存专用库房;

根据本项目特点,经与建设单位沟通后,拟建一个危险废物专用贮存间, 用于存放废矿物油;

- b.废矿物油必须装入符合标准的容器内:
- c.装载危险废物的容器内必须留足够的空间,容器顶部与固体表面之间保留 100mm 以上的空间:
- d.盛装危险废物的容器上必须粘贴符合危险废物识别标志设置技术规范 (HJ 1276—2022) 所示的标签。
 - e.危险废物贮存库房不得接收未粘贴上述规定的标签或标签填写不规范的

危险废物;

f.必须作好危险废物记录,记录上须注明危险废物的名称、来源、数量、特性和包装容器的类别、入库日期、存放库位、废物出库日期及接收单位名称;

危险废物的记录和货单在危险废物回取后应继续保留三年。

g.必须定期对所贮存的危险废物包装容器及贮存设施进行检查,发现破损, 应及时采取措施清理更换;

h.危险废物贮存库房设置灭火器等防火设备,做好火灾的预防工作;

i.在转移危险废物前,建设单位须按照国家有关规定报批危险废物转移计划;经批准后,产生单位应当向当地环境保护行政主管部门申请领取国务院环境保护行政主管部门统一制定的联单。并在危险废物转移前三日内报告当地环境保护行政主管部门,并同时将预期到达时间报告接受地环境保护行政主管部门。

j.建设单位必须如实填写联单中产生单位栏目,并加盖公章,经交付危险废物运输单位核实验收签字后,将联单第一联副联自留存档,将联单第二联交当地环境保护"行政主管部门,联单第一联正联及其余各联交付运输单位随危险废物转移运行。

k.联单保存期限为五年; 贮存危险废物的, 其联单保存期限与危险废物贮存期限相同。

综上,本工程固废均得到合理的贮存、处理、处置,处置率达到 100%,固体废物处置方案符合国家的有关法律法规,固体废物处置方式切实可行,不会对周围环境产生二次污染,处置措施可行。

6.2.6 环境风险防范措施及应急要求

6.2.6.1 环境风险防范措施

1、风险管理

具体要求如下:

- (1) 必须将"安全第一,预防为主"作为公司经营的基本原则;
- (2)必须进行广泛系统的培训,使所有操作人员熟悉自己的岗位,树立严 谨规范的操作作风,并且在任何紧急状况下都能随时对工艺装置进行控制,并

及时、独立、正确的实施相关应急措施;

- (3)设立专职部门,负责环保、安全管理,应由具有丰富经验的人才担当负责人,每个车间和主要装置设置专职或兼职安全员,兼职安全员原则上由工艺员担当;
- (4)建立完备的应急组织体系。建立风险应急领导小组,小组分厂区内和厂区外两部分。厂区内部分落实厂区内应急防范措施,厂区外部分负责上报公司领导和相关职能部门、当地政府、安全、消防、环保、监测等相关部门。

2、各风险源风险防范措施

(1) 大气环境风险防范措施

本项目各建构筑物之间及交通干道等间距满足安全防护距离和防火间距要求,建构筑物耐火等级符合《建筑设计防火规范》要求;厂区总平面布置符合防范事故要求,有应急救援设施及救援通道、应急疏散。针对厂区内有毒有害气体--天然气可能发生泄露的情况,锅炉房现有进气管线设置紧急切换阀门及报警系统。在运营期间各生产车间应定期检查维修,并在车间内设置紧急救护用品用具和医疗设施;一旦发生事故,立即采取措施,尽量切断泄露源,从源头上控制。同时安排管理人员定期巡查集气罩、废气治理等环保设施运行状况,杜绝事故排放情况发生。在事故发生时应及时派人处置,同时停止生产,待处理系统恢复正常运行后方可投入运行。

(2) 事故废水环境风险防范措施

1) 防渗措施

项目区内一般区域采用水泥硬化地面,罐区、污水收集及处理、固废贮存区等采取重点防渗,保证防渗系数大于 10⁻¹²cm/s,装置区、车间为一般防渗区,保证防渗系数大于 10⁻⁶cm/s,以确保不对地下水造成污染。

2) 事故水池的设置

本项目发生风险事故时,特别是发生火灾爆炸事故时,在进行消防灭火的过程中会产生大量的消防废水,消防废水若直接排放至外环境将会产生严重的水体污染事件。

为防止项目污水处理设施发生事故,废水直接排放至周边水体,厂区内建

设事故水池 250m³,满足《酿造工业废水治理工程技术规范》(HJ575-2010)中"事故池有效容积应大于发生事故时的最大废水产生量,或大于酿造工厂 24h的综合废水排放总量"。

2) 原酒泄漏

项目厂区内酒库建筑为"半地下式",库内半地下式"相当于围堰,一旦泄漏可以起到截留作用,防止原酒泄漏后直接排放。

3) 管道及管沟防渗措施

所有输送管道应定期对管道进行无损探伤,确定没有泄漏现象。腐蚀性介质的输送管道均采用 PP 管,埋地铺设的管道、阀门设专用防渗管沟,管沟上设活动观察顶盖,以便出现渗漏问题及时观察、解决,管沟与污水集水井相连,并设计合理的排水坡度,便于废水排至集水井,然后由污水处理站统一处理。

(3) 地下水环境风险防范措施

依据原料、辅料、产品的生产输送、储存、污水处理等环节,结合本项目 总平面布置情况,本项目厂区内对污水处理设施各池体和危废暂存间进行重点 防渗,酒糟暂存库、各生产车间及原料、产品库进行一般防渗,其余区域仅进 行简单防渗。

同时,为及时发现和预警项目厂区内部分区域防渗失效可能引起的水质污染,并采取合理的补救措施,本次评价设置1口背景值监测点(厂区内上游水井),下游设置1口污染扩散监测井(西厂界下游约480m处),按本报告提出的监测计划开展监测,能够有效发现非正常状况下的地下水污染影响。

6.2.6.2 应急预案

建设单位应根据《企业突发环境事件风险评估指南(试行)》(环办[2014]34号)、《关于印发<企业事业单位突发环境事件应急预案评审工作指南(试行)>的通知》(环办应急[2018]8号)等要求编制项目环境应急预案。应急预案的基本内容及编制要求如下:

(1) 企业基本情况介绍

详细调查企业所处的地理位置、周边环境、建设规模、产品方案、工艺特点、操作工况、贮存规模、总图布置、防护措施、区域水资源分布特点、气候

情况等,附项目平面布置示意图、周边区域道路交通示意图和疏散路线以及事故发生后交通管制示意图。

(2) 环境污染隐患及其危害性对环境的影响

根据项目物料的物性、毒性、危害性、控制条件、贮量等,筛选风险因子,并明确应急保护目标,分析各功能单元潜在的事故类型、发生事故的单元、危险 物质向环境转移的可能途径和影响方式。

(3) 应急救援组织机构、组成人员和职责分配

提出应急救援组织机构设置要求,明确指挥机构的职责和人员组成。本项目必须对重大危险源登记建档,进行定期检测、评估、监控,成立以负责人为总指挥,分管生产负责人为副总指挥的风险事故应急救援队伍,指挥部下设办公室、工程抢救援组、医疗救护组、后勤保障组等相关单位。

(4) 应急响应

预案中应包括应急分级响应机制、应急响应程序、信息报送与处理、指挥 和协调、应急处置措施、应急监测、应急终止等内容。

(5) 应急联动

应急预案应当符合"企业自救、属地为主,分类管理,分级响应,区域联动"的原则,与所在地地方人民政府突发环境事故应急预案相衔接。

(6) 应急保障

预案中应包括资金保障、装备保障、通讯保障、人力资源保障、技术保障、 宣传等内容。

(7) 预案培训、演练、管理与更新

为验证应急预案的可操作性和合理性,同时增强各部门之间的相互协作能力,预案中应要求对各类可能发生事故进行培训和应急演练,从而确保预案的适时改进、更新。所有运作人员参与污染事故应急演习的时间间隔不得超过一年,并做好演练记录。

综上,项目只要加强风险防范管理,按照本评价的要求完善风险防范措施, 制定有效的应急预案,并加强环境管理的前提下,项目的环境风险是可防控的。

6.3 环境保护措施汇总及环保投资估算

本项目环保投资主要包括各环保治理设施、绿化及常规监测仪器设备的配置费用等,工程环保投资共 173 万元,其中部分环保设施利用现有,本次改建项目环保投资为 47.5 万元,占总投资 4600 万元的 1.03%,工程环保投资估算见下表。

表 6.3-1 全厂工程环保投资

米			<u> Д</u>	投资概			
类 别	项目	污染物	主要	長设备或措施		算/(万	备注
力]						元)	
	卸粮工序	粉尘	设2个侧吸罩	进入1套布	经1根		利用现有
	四十八八二二/ 1	加土	进行收集	袋除尘器处	15m 高	8	(新増1
	除杂	粉尘	管道负压收集	理	排气筒		根排气筒
	14/41	707.	日之外是以永	~~	排放		0.5)
	1#粉碎	粉尘	管道负压收集局		经1根	5	利用现有
	211 [23 [11]	77.	袋除尘器		22m 高		14/14/2014
	2#粉碎	粉尘	管道负压收集局		排气筒	6	利用现有
			袋除尘器		排放		
废			现有2台锅炉燃			2	利用现有
气	燃气锅炉	烟尘、		后经 8m 高排气			
治	,,,,,	SO_2 , NO_X	新增1台燃气锅炉,采用低氮燃烧技术,			1	新增
理				8m 高排气筒排			
	汚水处理 站		废气收集后经 1				
		NH_3 , H_2S	行处理,去除效		10	新增	
			排气筒排放,周	周围加强绿化, 除臭剂	喷酒生物		
	T →) ↓ → →	+14 + +	- 		١٨٢ ميد		
	酿造车间	有机废气		机,加强车间延		2	新增
	酒糟库	恶臭	建设封闭酒糟角			4	新增
	食堂油烟	油烟		装置处理后经管		0.5	利用现有
	道路运输	 扬尘	厂区内地面进行		扫、洒水,	1.5	利用现有
	扬尘			【少道路扬尘			,,,,,,
			进入厂区内自建				
		COD	为 250m³/d,采		. –		~
		BOD	池+IC 厌氧反应			95	利用现有
废	综合废水	SS	膜+混凝沉淀+运				
水		NH3-N 等	7 111 -11 4 1	可政污水处理有	,,,,,,		
			新增事故水池 2		污水处理	5	新增
			在:				
	初期雨水	COD	建设 500m ³ 初期雨水收集池			5	新增
		BOD, SS					

类别	项目	污染物	主要设备或措施	投资概 算/(万 元)	备注
噪声	噪声防治	生产设备	选低噪设备,置于室内,减震基础,柔 性接头、加强维护等措施	5	新增
	卸粮及除 杂、粉碎	杂质粉尘	作为家畜饲料直接出售		
	酿造工序	酒糟	日产日清,外售给附近养殖场作饲料		
固体	生化处理 工序	污水处理 站污泥	指定地点倾倒,由环卫部门统一处置	2	利用现有
一 废 物	锅炉软水 制备	废离子交 换树脂	由厂家定期进行回收并更换	2	44)1156 H
120	深度处理 系统过滤 设备	废石英砂 及废活性 炭	由厂家定期进行回收并更换		
	修配车间	废矿物油	*************************************		
	化验室	实验药品 等	处置	10.0	新增
	地下水	地下水防渗	采取分区防渗。污水处理设施池体、危废暂存间采取重点防渗:池体采用防渗钢筋混凝土,池内表面涂刷水泥基渗透结晶型防渗涂料,渗透系数<1.0×10 ⁻¹¹ cm/s,危废暂存间采用混凝土防渗的基础上加铺2mmHDPE膜强化防渗(渗透系数<1.0×10 ¹⁰ cm/s);酒糟暂存库、生产车间及原辅材料库采取一般防渗,在黏土防渗层的基础上设置混凝土地面,渗透系数小于1×10 ⁻⁷ cm/s	8.0	利用现有
			本次新增危废暂存间、酒糟库等采取防 渗	2.0	新增
环	环境管理与监 2.加强i		后口设计和标志,定期进行污染源监测; ,及时吸收先进生产技术,提高厂内技术 水平; 环保设备档案,保证其开工率和达到设计 指标要求。	6.0	新增
	生态	做	好现有植被管理措施,加强绿化	2.0	新增
			合计	175	/
			本次改建	47.5	新增

7. 环境影响经济损益分析

环境经济损益分析是环境影响评价的一项主要内容,设置本专题的目的在 于衡量建设项目所需投入的环保投资和能收到的环保效果,以评价项目的环境 经济可行性。因而在环境经济损益分析中除计算用于控制污染所需投资费用外, 同时还需估算可能收到的环境与经济效益,以实现增加地区的建设项目、扩大 生产、提高经济效益的同时不会造成区域环境污染,做到经济效益、社会效益 和环境效益的统一。

7.1 社会效益分析

- (1)本项目投产后,能够增加地方财政收入,带动关联行业发展,推动农业供给侧改革,具有显著的社会经济效益。
- (2)本项目投产后,对原料的收购将推动当地种植业的发展,并拉动关联产业创造更多的就业岗位,缓解当地社会的就业压力。
- (3)白酒酿造作为山西省传统的优势产业,本工程的实施为多元化发展打造一个全新的平台,及时调整产品产业结构、产业状态,稳定优质白酒生产,提高优质白酒的竞争力,形成优质白酒的规模效益。本项目建成投产后,除进一步增强晋中市酒类产业实力、促进白酒产业的发展外,还可辐射带动粮食、种植、农产品加工、机械、交通运输、贸易、服务业等相关产业的发展,有利于调整晋中市产业结构以及优化产业布局。
- (4)本项目符合国家酒类产业政策、农业产业化政策,项目的实施有利于培育具有地方特色的主导产业和优势产业,促进农业产业结构的调整,对发展农村经济,解决"三农"问题有积极作用,可成为经济发展新的增长点。

综上所述,本项目有利于促进地区经济发展,具有良好的社会经济效益。

7.2 经济效益分析

本项目总投资 4600 万元,改建完成达产后年产白酒原酒 15000t,其中: 麸曲原酒产能 9000 吨/年,大曲原酒产能 6000 吨/年。本项目运行后,全部投资内部收益率为 36.1%,大于相应的基准收益率 10%,财务净现值均大于零,税后财务内部收益均大于行业基准收益率(12%),说明盈利能力满足行业要求;本项目投资利润率大于行业平均水平,说明单位投资随企业积累的贡献较高,

表明该项目有一定的抗风险能力, 本工程是可行的。

7.3 环境影响经济损益分析

7.3.1 环保投资估算

本次改建环保投资主要包括各环保治理设施、绿化及常规监测仪器设备的 配置费用等,工程环保投资 47.5 万元,占总投资 4600 万元的 1.03%。

7.3.2 环境影响经济效益分析

7.3.2.1 环保费用指标(C)

环保费用是指环保工程运行管理费用C,它包括折旧费和运行费。

1、环保设备折旧费 C1

本环保设备设计年限为 10 年, 残值率按 5%计, 按等值折旧计算, 其折旧费为:

$C1=a\times C0/n$

式中: a--固定资产形成率, 取环保投资的 85%;

C0—环保总投资(万元);

n—折旧年限,取10年。

环保设施投资折旧费为4.04万元/年。

2、环保设施运行费

参照国内外企业环保设施运行费的有关资料,环保设施的年运行费用按环保投资的 10%计,

 $C2 = C0 \times 10\%$

则环保设施运行费用 4.75 万元/年。

3、环保管理费用

环保管理费用包括管理部门的办公费、监测费、技术咨询费等,按环保投资的 1%计, C3=C0×1%

则环保管理费用 0.48 万元/年。

4、环保设施运营支出费 C

C= C1+ C2+ C3=9.27 万元/a

项目运营后,环保投资56.77万元,各项环保治理措施的运行每年需投资

31.5 万元(负效益)经营。

7.3.2.2 环保效益指标(R)

污染治理措施的实施,不仅可以有效控制污染,而且会带来一定的经济效益,这部分效益体现在两方面,一是直接经济效益(R1),环保措施实施后对废物回收而获得的价值,二是间接经济效益(R2),环保措施实施后所带来的社会效益和环境效益。

(1)直接经济效益(R1)

$$R_i = \sum_{i=1}^{n} N_i + \sum_{i=1}^{n} M_i + \sum_{i=1}^{n} S_i + \sum_{i=1}^{n} T_i + \sum_{i=1}^{n} Q_i$$

$$i=1 \quad i=1 \quad i=1 \quad i=1 \quad i=1$$

式中:

Ni——能源利用的经济效益;

Mi——资源利用的经济效益;

Si——固废利用的经济效益;

Qi——废气利用的经济效益;

Ti----废水利用的经济效益;

i——利用项目个数。

本项目在采取各项环保措施的情况下可获得环境经济效益如下:

回收酒糟、杂质粉尘等: 33019t/a, 以每吨 100 元, 价值 330.19 万元。

由上可见,本项目环保投资所创造的直接经济效益(R1)为330.19万元/年。

(2) 间接经济效益(R2)

间接经济效益是由环保设施投入运行期间,所能减少的损失和补偿费用构成的。

 $R_2=J_i+K_i+F_i$

式中: J:——控制污染后环境减少的损失;

K_i——控制污染后对人体健康减少的损失;

F_i——控制污染后减少的应纳税额。

控制污染后环境减少的损失和控制污染后对人体健康减少的损失,因无实

际数据,取直接经济效益的5%计算。

则 Ji+Ki=R1×5%=16.51 万元

根据《中华人民共和国环境保护税法》、《关于山西省大气污染物和水污染物环境保护税适用税额的决定》及《山西省环境保护税核定计算办法(试行)》,采取环保措施后可以减少缴纳的税费 Fi=10 万元。

因此本项目环保投资所创造的间接经济效益(R2)为26.51万元。

本项目环保效益总指标 R=R1+R2=356.7 万元

7.3.2.3 环境经济效益分析

采用效益与费用法进行分析,环境效益为:

E=环境经济效益/环保费用=356.7/47.5=7.51>1

7.3.3 环境经济损益分析结论

本项目采取了较为完善的环保治理措施,使得工程的污染物排放量得到了有效地控制,通过对本项目建设的社会、经济和环境效益分析可知,在落实本次环境影响评价所提出各项污染防治措施的前提下,项目的建设基本能够实现经济效益、社会效益和环境效益相统一的要求,即为地方经济发展做出贡献,又通过环保投资减少了污染物排放量,最大限度地减轻了对外环境的污染。项目的建设原则满足可持续发展的要求,从环境经济的角度而言,项目建设是可行的。

8. 环境管理与监测计划

8.1 环境管理

8.1.1 环境管理机构

加强环境管理是贯彻执行环境保护法规,实现建设项目的社会、经济和环境效益的协调统一,以及企业可持续发展的重要保证。为加强环境管理,有效控制环境污染,根据本项目具体情况,建设单位应设置独立的环保机构统一负责全厂的环境管理和监测工作。

(1) 机构设置

厂区现有综合环境管理部门,负责对公司内环境保护实行统一的监督管理,并对厂区域的环境质量全面负责,接受上级环境保护行政部门的监督、检查和指导。有一名公司领导分管保护管理工作,1名运行管理人员负责污水处理站和其它污染处理设施配备。本次改建项目在建设和营运中,增加1名技术人员参与项目建设的环保设施的"三同时"管理,1名专职环保人员负责本单位日常环保监督管理工作及环保知识法规教育、操作规范的培训。

(2) 主要职责

- 1) 贯彻执行中华人民共和国和山西省环境保护法规和标准。执行有关环境保护工作的各项文件,接受环境保护主管部门的监督和检查,并定期上报各项环保管理工作的执行情况。对本工程的环境保护工作进行全面的监督及管理,健全污染源档案。
- 2)对污染物的各种处理设备的正常工作状态进行监督管理,对项目区域的 自然和生态环境进行保护。
- 3)对工程产生的污染物及处置情况进行记录、管理,及时解决生产过程中 出现的环保问题。制定事故处理的应急预案,参与环境污染事故的调查处理工 作。
- 4)建立环保管理网络,明确各自环保职责,实行层层负责制,并严格进行 考核,做到奖惩兑现。
- 5)加强生产运行管理,定期对设备、管道和治污设施进行检修和维护,杜绝生产过程中跑、冒、滴、漏现象的发生。

- 6) 积极开展环境保护宣传工作, 提高职工的环境保护意识。加强环保技术 人员的培训工作,不断提高环保人员的业务素质。
 - 7)企业配合地方环境监测站对项目污染源进行例行监测。
 - 8)定期对项目产生的固废进行清运和处置; 搞好环境卫生及绿化管理工作。

8.1.2 环境管理措施

针对本项目特点,建设单位主要环境管理措施见下表。

定期向地方生态环境主管部门汇报环保工作情况。

时段 管理措施 ①项目建成后,检查环保设施是否符合"三同时"原则;②监测环保设施运行效率 施工期 与效果: ③验收通过后,工程正式投入运行 制定各类环境保护规章制度、规定及技术规程,对员工进行上岗前环保知识法规 教育及操作规范的培训: 加强对环保设施的运行管理,制定定期维修制度;制定计划非正常工况下污染物 处理、处置和排放管理措施,配置能够满足非正常工况下污染物处理、处置的环 保设施: 加强环境监测工作,保证各类污染源达标排放,监测期间如发现异常情况应及时 运营期 向有关部门通报,及时采取应急措施,防止事故排放; 建立完善的环保档案管理制度,包括各类环保文件、环保设施运行、操作及管理 情况、监测记录、污染事故情况及相关记录、其它与污染防治有关的情况和资料 等。

表 8.1-1 环境管理措施

8.1.3 排污口规范化

根据《环境保护图形标志排放口(源)》(GB15562.1—1995)及《环境 保护图形标志固体废物贮存(处置)场》(GB15562.2—1995)中有关规定,在 厂区"三废"及噪声排放点设置标志牌。标志牌应设在与之功能相应的醒目处。 标志牌必须保持清晰、完整, 当发现有形象损坏、颜色污染、退色等情况时, 应及时修复或更换。检查时间至少每年一次。同时厂内总排口应根据环保要求 留有采样口,并设置明显标志,以便环保部门定期检查、监督和验收。排放口 图形标志见下表。

表 8.1-2 排放口图形标志

序号	提示图形符号	8.1-2 排放口图形体态 警告图形符号	名称	功能
1			污水排放口	表示污水向水体排放
2			废气排放口	表示废气向大气环境排放
3	D(((9(()	噪声排放源	表示噪声向外环境排放
4			一般固体废物	表示一般固体废物贮存、处置场
5		危险废物 贮存设施 ^{申位名称。} _{设油填码:} _{负责人及联系方式:} 危险废物	危险废物	表示危险废物贮存设施

(1) 废气排污口规范化

- ①本项目排气筒应设置编号铭牌,并注明排放的污染物。采样口的设置应符合《污染源监测技术规范》的要求并便于采样监测。
 - ②排气筒应设置便于采样、监测的采样口和必要的采样监测平台。

- ③采样孔、点数目和位置应按《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)的规定设置。
 - (2) 废水排放口规范化
 - ①废水排放口环境保护图形标志牌应设在排放口附近醒目处。
 - ②在总排口处设置采样点。
 - (3) 噪声排污口规范化

噪声排污口规范化: 在噪声排放点附近醒目处设置环境保护图形标志牌。

- (4) 固体废物
- 一般固废暂存应符合《一般工业固体废物贮存和填埋污染控制标准》 (GB18599-2020),并设置环境保护图形标志牌。

危废暂存间应按照相关要求进行规范化建设,地面进行硬化和防渗处理, 并按危险废物类型划分存放区域,且在醒目处设置环境保护图形标志牌。危险 废物在厂区内贮存过程中应分类进行贮存。

8.1.4 排污许可制度

(1) 落实按证排污责任

依据国务院办公厅关于印发《控制污染物排放许可制实施方案的通知》(国办发[2016]81号)、《排污许可管理办法(试行)》(部令第 48 号)、《关于做好环境影响评价制度与排污许可制衔接相关工作的通知》(环办环评[2017]84号)中相关要求,建设单位必须按期持证排污、按证排污,不得无证排污,及时申领排污许可证,对申请材料的真实性、准确性和完整性承担法律责任,承诺按照排污许可证的规定排污并严格执行;落实污染物排放控制措施和其他各项环境管理要求,确保污染物排放种类、浓度和排放量等达到许可要求;应当取得排污许可证而未取得的,不得排放污染物。明确单位负责人和相关人员环境保护责任,不断提高污染治理和环境管理水平,自觉接受监督检查。

(2) 实行自行监测和定期报告制度

依法开展自行监测,安装或使用监测设备应符合国家有关环境监测、计量 认证规定和技术规范,保障数据合法有效,保证设备正常运行,妥善保存原始 记录,建立准确完整的环境管理台账。如实向环境保护部门报告排污许可证执 行情况,依法向社会公开污染物排放数据并对数据真实性负责。排放情况与排 污许可证要求不符的,应及时向环境保护部门报告。

(3) 排污许可证管理规范化

按排污许可证规定,定期在国家排污许可证管理信息平台填报信息,编制 排污许可证执行报告,及时报送有核发权的环境保护主管部门并公开,执行报 告主要内容包括生产信息、污染防治设施运行情况、污染物按证排放情况等。

根据《关于做好环境影响评价制度与排污许可制衔接相关工作的通知》(环办环评[2017]84号)、《固定污染源排污许可分类管理名录(2019年版)》(生态环境部令第11号)及《排污许可管理办法(试行)》(环境保护部令第48号),本项目属于十、酒、饮料和精制茶制造业中的"酒的制造 151",有发酵工艺的年生产能力 5000 千升及以上的白酒、啤酒、黄酒、葡萄酒、其他酒制造,应实施重点管理,应当在启动生产设施或发生实际排污之前申请更换排污许可证。

8.1.5 环境保护设施验收

根据《国务院关于修改〈建设项目环境保护管理条例〉的决定》(中华人 民共和国国务院令第 682 号)第十七条:编制环境影响报告书、环境影响报告 表的建设项目竣工后,建设单位应当按照国务院环境保护行政主管部门规定的 标准和程序,对配套建设的环境保护设施进行验收,编制验收报告。

验收办法参照《关于发布<建设项目竣工环境保护验收暂行办法>的公告》(国环规环评[2017]4号)。建设项目竣工后,建设单位应根据环评文件及审批意见进行自主验收,向社会公开并向环保部门备案。其中,需要对建设项目配套建设的环境保护设施进行调试的,建设单位应当确保调试期间污染物排放符合国家和地方有关污染物排放标准和排污许可等相关管理规定。环境保护设施未与主体工程同时建成的,或者应当取得排污许可证但未取得的,建设单位不得对该建设项目环境保护设施进行调试。调试期间,建设单位应当对环境保护设施运行情况和建设项目对环境的影响进行监测。验收监测应当在确保主体工程调试工况稳定、环境保护设施运行正常的情况下进行,并如实记录监测时的实际工况。建设项目竣工验收通过后,方可正式投产运行。

8.1.6 企业信息公开

根据《企业事业单位环境信息公开办法》(环保部令第31号)的规定,企 业事业单位应当按照强制公开和自愿公开相结合的原则,及时、如实地公开其 环境信息。如环境信息涉及国家秘密、商业秘密或者个人隐私的,依法可以不 公开: 法律、法规另有规定的, 从其规定。企业事业单位应当建立健全本单位 环境信息公开制度,指定机构负责本单位环境信息公开日常工作。

企业应当公开下列信息:

- (1) 基础信息,包括单位名称、组织机构代码、法定代表人、生产地址、 联系方式,以及生产经营和管理服务的主要内容、产品及规模:
- (2) 排污信息,包括主要污染物及特征污染物的名称、排放方式、排放口 数量和分布情况、排放浓度和总量、超标情况,以及执行的污染物排放标准、 核定的排放总量:
 - (3) 防治污染设施的建设和运行情况;
 - (4) 建设项目环境影响评价及其他环境保护行政许可情况:
 - (5) 突发环境事件应急预案;
 - (6) 其他应当公开的环境信息。

8.2 环境监测计划

为了检验环保设施的治理效果、考察污染物的排放情况,需要定期对环保 设施的运行情况和污染物排放情况进行监测。通过监测发现环保设施运行过程 中存在的问题,以便采取改进措施。依据《排污单位自行监测技术指南 酒、饮 料制造》(HJ 1085-2020),本项目改建完成后运营期全厂污染源及环境质量 监测计划如下表所示。

		表 8.2-1	污染源及环境监测计划		
分类	类型	污染源名称	监测因子	监测	实施单
75	天空	门条你石你	血侧凸丁	频率	位
		卸粮、清理	颗粒物	1 次/半年	
		筛分	本 以不至	1 (八十十	委托有
床层		粉碎工序	颗粒物	1 次/半年	资质的
废气	有组织	4 11 ldh H H H h.	NOx	1 次/月	环境监
		1#燃气锅炉	颗粒物、SO ₂ 、林格曼黑度	1 次/年	测单位
		2#燃气锅炉	NOx	1 次/月	

分类	类型	污染源名称	监测因子	监测	实施单
刀天	大生	17米冰石你	皿例囚]	频率	位
			颗粒物、SO ₂ 、林格曼黑度	1 次/年	
		污水处理站	臭气浓度、氨、硫化氢	1 次/半年	
		厂界上风向	颗粒物	1 次/半年	
	无组织	1个点,下	臭气浓度、硫化氢、氨	1 次/半年	
		风向4个点	非甲烷总烃	1 次/半年	
			流量、pH、COD、氨氮、总氮、	自动监测	
	/	废水总排放	总磷		
废水		口	悬浮物、五日生化需氧量、色度	1 次/季度	
		雨水排放口	悬浮物、化学需氧量	1 次/月	
噪声	/	厂界	等效连续 A 声级	1 次/季	
			基本因子: 色度、氨氮、硝酸盐、		
			亚硝酸盐、挥发性酚类、氰化物、		委托有
环境质	地下水环境	厂区下游水	砷、汞、六价铬、总硬度、铅、	2 次/年	资质的
量监测	地下小小児	井	氟化物、镉、铁、锰、溶解性总	2 1八十	环境监
			固体、硫酸盐、耗氧量、氯化物、		测单位
			总大肠菌群、菌落总数、石油类		

8.3 污染物排放清单

本次改扩建完成后污染物排放清单见下表。

表 8.3-1 污染物排放清单

					17 VIN 11	*114 1				
类别	污染源	污染物	产生量 t/a	主情况 产生浓度 mg/m³	环保措施	有组织 排放量 t/a	排放情况 排放浓度 mg/m³	无组织 排放情 况 排放量 t/a	执行标准	总量 指标 t/a
	卸粮、清理筛分	颗粒物	16.12	1500	卸粮工序设 2 个侧吸罩收集后 与除杂过程负压收集粉尘进入		0.0183	《大气污染物综合排 放标准》	/	
	粉碎工序	颗粒物	65.0	1500	2 台粉碎机经负压收集后进入2 套布袋除尘器,处理后经1根 22m排气筒排放,排气筒内径 0.5m	0.437	10.0	0.0636	(GB16297-1996)表 2中二级限值	/
		颗粒物	0.472	5	采用低氮燃烧技术,3 台锅炉分	0.472	5	0	《锅炉大气污染物排	/
废气	3 台燃气	SO ₂	0.285	3.0	别经 1 根 8m 排气筒排放,排气	0.285	3.0	0	放标准》	/
	锅炉废气	NO _X	2.18	20	筒内径 0.6m	2.18	20	0	(DB14/1929-2019) 表限值	/
		NH ₃	0.94	26.2	废气收集后经1套生物滤池除	0.045	1.31	0.0094		/
	 污水处理	H ₂ S	0.036	1.0	臭系统进行处理,处理后经1	0.0017	0.05	0.00036	《恶臭污染物排放标	/
	站	臭气浓 度	/	/	根 15m 排气筒排放,排气筒内 径 0.4m;周围加强绿化,喷洒 生物除臭剂	/	/	/	准》(GB14554-93) 中表 2 限值要求	/
	酿造车间	有机废	/	/	保持车间通风	/	/	8.882	对周围环境影响较小	/
	酒糟库	恶臭	/	/	建设封闭酒糟库,喷洒生物除	/	/	无组织	对周围环境影响较小	/

					臭剂除臭					
	食堂	油烟	0.045	7.5	油烟净化装置	0.011	1.875	/	对周围环境影响较小	/
	道路运输	扬尘	0.25	/	厂区内地面进行硬化并进行清 扫、洒水	/	/	0.025	对周围环境影响较小	/
			COD			6.892	105mg/L			2.625
			BOD ₅		采用"格栅间+调节池+气浮池	6.892	105mg/L		《发酵酒精和白酒工业水污染物排放标》	/
废水	 综合废水		SS		+IC 厌氧反应器+ AO/AO/AO	0.459	7mg/L	污水总	進入行案初非成份 准》(GB 27631-2011)	/
			NH ₃ -N		+MBR 膜+混凝沉淀+过滤+消	1.969	30mg/L	排口	新建企业间接排放限	0.130
			TP		毒"工艺进行处理	0.197	3.0mg/L		值	/
			TN			4.122	62.8mg/L			/
噪声	生产设备、风机	等效声级	/	/	选用低噪声设备、隔声减振等		达标排放		《工业企业厂界环境 噪声排放标准》 (GB12348-2008)2 类 标准	/
	卸粮及除 杂、粉碎	粉尘杂 质	33.5	/	作为家畜饲料直接出售		有效处置			/
	酿造工序	酒糟	40500	/	日产日清,外售给附近养殖场 作饲料		有效处置			/
固体	污水处理 站	污泥	46.24	/	指定地点倾倒,由环卫部门统 一处置		有效处置		《一般工业固体废物 贮存和填埋污染控制	/
废物	锅炉软水 制备	废离子 交换树 脂	0.5	/	由厂家定期进行回收并更换		有效处置		标准》 (GB18599-2020)	/
	过滤设备	废过滤 材料	0.5	/	由厂家定期进行回收并更换		有效处置			/
	办公生活	生活垃	45	/	由环卫部门定期进行处理		有效处置	·		/

		圾						
	修配车间	废矿物 油 0.7			暂存在危废暂存间,定期送有	有效处置	《危险废物贮存污染 控制标准》(GB	/
	化验室	废液、 废包装	0.05	/	资质单位处置	有双处直	18597-2001)及 2013 年修改单	/
地下水	污水处理 各构筑物 事故情况 下泄漏	构筑物 故情况 COD、氨氮			分区防渗;设置监控井			/
风险防范措施	大气环境风险防范措施				设置乙醇、天然气*泄漏检测报警系统,定期检查维修;			
	事故废水环境风险防范措施				原酒储罐四周设置围堰;厂区内新建设1座250m3应急事故水池;			
	地下水环境风险防范措施				设置分区防渗			
	应急监测及应急物资				设置紧急救护用品用具和医疗设施等			
	应急预案				企业应编制突发环境事件应急预案、并进行备案及演练			
	环境监测				制定环境监测计划,包括污染源监测计划及环境质量监测计划,具体见10.2章节			
公开 信息	公开信息内容				基础信息、排污信息、防治污染设施的建设和运行情况、建设项目环境影响评价及其他环境保护行政许可情况、突发环境事件应急预案及其他应当公开的环境信息			
内容	方式				建设单位采取晋中当地网站及现场张贴公示信息的方式进行公开			

9. 环境影响评价结论

9.1 评价结论

9.1.1 建设项目概况

祁县良有酒业有限公司成立于 1987 年,生产能力为年产 1000 吨高粱系列白酒。公司于 2005 年扩建至年产 6000 吨清香型白酒,2006 年 12 月 15 日祁县环保局以"祁环字[2006]58 号"文对该项目进行了批复;2011 年 11 月 10 日祁县环保局以"验[2011]015 号"文对该项目进行了验收。2019 年 12 月 2 日晋中市生态环境局对 祁县良有酒业有限公司发放了排污许可证书(证书编号91140727762450294D001R)。2020 年 7 月 23 日祁县行政审批服务管理局以(祁)登记企变字[2020]第 60 号准予企业名称变更;企业名称变更为:山西昌源酒业有限公司。

为适应新的市场目标需求,山西昌源酒业有限公司拟投 4600 万元,于山西省祁县贾令镇贾令村建设"山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目"。本项目已取得祁县工业和信息化局出具的《关于祁县良有酒业有限公司改建自动化灌装生产线与地缸大曲车间项目备案的通知》(祁工信字[2020]第 29 号),拟在现有厂区内进行改建,不新增占地。本项目改建内容主要为:改建现有的麸曲酿造二车间为地缸大曲酿造车间,改建现有闲置库房为大曲酿造四、五、六车间,拆除现有办公区改建为大曲酿造七车间,新建白酒灌装车间,同时配套建设相关辅助工程及设备等内容,现有麸曲生酿造车间通过车间投料量增加及生产班时的增加,改建完成后可年产白酒 15000t,其中:新增麸曲原酒 3000t/a,大曲原酒 6000t/a,建成后预计年产麸曲原酒 9000t/a,大曲原酒 6000t/a。工程总投资 4600 万元,其中环保投资 47.5 万元,占总投资比例为 1.03%。

9.1.2 产业政策符合性

依据《产业结构调整指导目录(2019年本)》(国家发展和改革委员会第29号令),本项目白酒生产不属于淘汰类和限制类项目,属于允许类。同时,本项目不属于《市场准入负面清单(2020年版)》禁止事项,因此,本项目符合相关国家相关产业政策。

9.1.3 规划及选址合理性

本项目位于祁县贾令镇贾令村南约 1.2km 处,不在祁县城市总体规划范围

内,不违背城市总体规划,不违背祁县生态功能区划及生态经济区划。本项目在 山西昌源酒业有限公司现有厂区内建设,不新增占地,厂区占地性质为工业用地, 符合用地规划。项目周边不涉及自然保护区、风景名胜区、天然林保护区和基本 农田保护区等需要特殊保护的地区,生态环境良好,不违背相关规划,因此,本 项目选址合理可行。

9.1.4 环境质量现状

9.1.4.1 环境空气

本次评价收集了祁县 2022 年的环境空气例行监测数据统计资料,评价区 PM₁₀、PM_{2.5}、O₃年均浓度出现超标,其余因子均满足相应标准限值,属不达标 区域。

山西蓝源成环境监测有限公司于 2021 年 5 月 15-21 日对项目区 TSP、H₂S、NH₃进行了环境空气质量现状监测,2021 年 10 月 28 日-11 月 3 日对本项目区非甲烷总烃进行了监测。监测结果表面厂区内、沙堡村 2 个监测点环境空气质量TSP、H₂S、NH₃、NMHC 全部达标。

9.1.4.2 地下水环境

山西蓝源成环境监测有限公司于 2021 年 5 月 18 日对地下水环境进行了监测,由监测结果可知:各监测点各监测指标监测结果均满足《地下水质量标准》(GB/T14848-2017)中III类标准限值,且部分监测项目均低于检出限。项目所在区域地下水环境质量良好。

9.1.4.3 声环境

山西蓝源成环境监测有限公司于 2021 年 5 月 15-16 日对厂界噪声进行了监测,由监测结果可知:本项目选址四侧厂界处昼间及夜间现状环境噪声均满足《声环境质量标准》(GB3096-2008)2 类标准值要求。项目所在区域声环境质量良好。

9.1.5 施工期环境影响及防治措施

本项目不涉及新建厂房,利用现有厂房闲置车间进行生产。施工期间无土建施工,仅为厂房内部设备安装,施工周期短,对周边环境影响较小。

9.1.6 运营期环境影响及防治措施

9.1.6.1 废气

(1) 粉尘

本项目在卸粮工序设置 2 个侧吸罩对粉尘进行收集,与振动筛分清理过程负压收集的粉尘,一起进入一套脉冲布袋除尘器进行处理,处理效率 99%,处理后经一根 15m 高排气筒排放;

两套粉碎设备产生的粉尘分别经管道负压收集后,进入一套脉冲布袋除尘器进行处理,处理效率99%;处理后经一根22m高排气筒排放;

上述工序产生的粉尘经处理后满足《大气污染物综合排放标准》 (GB16297-1996)表2中二级限值的要求。

(2) 锅炉废气

本项目锅炉采用清洁能源天然气作燃料,并采用低氮燃烧技术后,废气中烟尘、SO₂、NO_x排放浓度可满足《锅炉大气污染物排放标准》(DB14/1929-2019)中表 3 的燃气蒸汽锅炉大气污染物排放浓度限值要求,可以实现达标排放,3 台锅炉燃烧废气分别经 1 根 8m 高排气筒排放;

(3) 酿造车间有机废气(NMHC)

工艺逸散的有机废气主要分布于酿酒车间的发酵室、蒸酒过程,在生产过程 应保持车间通风,以保持良好的车间工作环境,采取以上可以有效稀释车间废气的浓度,对周围环境的影响较小。

(4) 酒糟库恶臭

酿造车间产生的酒糟及时运至酒糟库,酒糟库产生的恶臭通过喷洒生物除臭剂除臭,对周围大气环境影响很小。

(5) 污水处理站恶臭

污水处理系统在进水泵站、格栅、调节池、生物反应池及污泥处理等部分会产生恶臭产生,本项目对将厌氧池、缺氧池、好氧池、沉淀池和污泥干化池等进行全封闭,将废气收集后一起进入生物滤池除臭系统进行处理,去除效率可达到95%,同时在污水处理站周边设置加强绿化,喷洒生物除臭剂,采取措施后 NH₃和 H₂S 排放量可满足《恶臭污染物排放标准》(GB14554-93)中表 2 恶臭污染物排放标准值限值要求。

(6) 食堂油烟

餐厅油烟收集后经油烟净化器处理后通过专用烟道引至屋顶进行排放,排放

浓度能够满足《饮食业油烟排放标准(试行)》(GB18483-2001)中标准限值 2mg/m³。

(7) 道路运输扬尘

要求项目建设单位对厂区内地面进行硬化并进行清扫、洒水,以减少道路扬尘;运输车辆加盖篷布,并严禁超载;在沿村道路上要限速行驶,厂内非道路移动机械达到国三及以上排放标准或使用新能源机械比例不低于 50%。公路和厂内运输使用达到国六及以上排放标准的重型载货车辆(含燃气)或新能源汽车比例不低于 50%。

综上所述,采取上述措施后,本项目产生的废气对周围大气环境影响很小。 9.1.6.2 废水

本项目改建完成后,将全厂生产废水及生活污水考虑在内,共产生废水量为242.57m³/d,经收集后一起排入厂区污水处理站进行处理,设计处理工艺采用"格栅间+调节池+气浮池+IC 厌氧反应器+AO/AO/AO+MBR 膜+混凝沉淀+过滤+消毒",经处理后废水中各污染物排放标准满足《污水排入城镇下水道水质标准》(GB/T 31962-2015)A 级标准限值,废水经处理后通过污水管网进入祁县鸿宇市政污水处理有限公司处理。

9.1.6.3 噪声

本工程的主要噪声源来自清理、粉碎、酿酒、锅炉房、灌装和污水处理等工序的生产设备,采取选用低噪声设备及减振、隔声等措施,合理布置噪声源位置,本项目改建完成后,厂界噪声的预测值和现状值叠加后可满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准限值的要求,对周边环境影响较小。9.1.6.4 固体废物

本项目固体废物主要包括一般工业固体废物和危险废物。

(1) 一般工业固体废物

一体化筒产生的仓杂质粉尘: 作为家畜饲料直接出售;

酒糟: 暂存在酒糟库,日产日清,禁止在酿造车间内堆积,外售给附近养殖场作饲料;

污水处理站污泥:干化后清运至环卫部门指定地点倾倒,由环卫部门统一处置:

废离子交换树脂:由厂家定期进行回收并更换

废过滤材料: 主要为石英砂及废活性炭,由厂家定期进行回收并更换;

(2) 危险废物

修配车间产生的废矿物油和实验室产生的废弃实验药品及装置均属于危险 废物,暂存于厂区危废暂存间内,定期交由有资质单位处理。

9.1.6.5 地下水

本项目生产过程中加强生产管理,对污水处理构筑物进行定期检漏监测及检修,通过严格落实各项环保治理措施加强源头控制,对各水池、管网和危废暂存间等进行分区防渗,可减轻各种下渗对地下水可能造成的污染,同时设置背景监测井和污染扩散监测井进行跟踪监测,采取上述措施后该项目的建设对周围地下水环境产生的影响不大。

9.1.6.6 环境风险

本项目涉及的环境风险隐患主要为原酒罐区白酒泄漏、酿酒有机废水事故排放、天然气泄漏、消毒剂次氯酸钠溶液泄漏等。采取本项目提出的风险防范措施 后,可将有毒、有害气体泄漏风险事故率降到最低点。

9.1.7 总量控制

本项目涉及的总量控制指标为颗粒物、SO₂、NOx、COD 和 NH₃-N。拟申请总量指标如下表所示。

类别	污染因子	污染物排放量	已申请总量	申请总量
	颗粒物	1.289	0	1.289
废气	NO_X	2.18	0	2.18
	SO2	0.285	0	0.285
废水	COD	2.625	0	2.625
及小	NH ₃ -N	0.130	0	0.130

表 9.1-2 全厂主要污染物排放量及拟申请量指标一览表 单位: t/a

9.1.8 公众意见采纳情况

根据《环境影响评价公众参与办法》(生态环境部令第 4 号),本项目公众参与工作采取了网站公示(两次)、报纸公示(两次)及现场张贴公示信息相结合的方式告知公众,公开征求了公众对项目的建设意见。公示期间,未收到反馈意见。

9.1.9 环境影响经济损益分析

本项目总投资 4600 万元,其中环保投资 47.5 万元,约占总投资 1.03%,主要用于废气、废水、噪声治理等,环保投资的落实和治理设备的有效运行,将减少本项目建设所带来的环境影响。

9.1.10 环境管理与监测计划

建设单位应设置专职人员并建立相应的环境管理体系,落实排污口规范化工作,按照规定年限申请并取得排污许可证。建设项目竣工后,建设单位应进行自主验收。竣工环保验收通过后,方可正式投产运行。

根据本项目特点,工程运营期应按照本次评价提出的环境监测计划、国家发布的最新监测要求以及晋中市生态环境保护主管部门的要求落实环境监测计划。

9.1.11 综合结论

根据中华人民共和国国家发展和改革委员会令第 29 号《产业结构调整指导目录(2019 年本)》本项目未被列入淘汰类或限制类项目,属于允许类项目。 2020 年 5 月 6 日,祁县工业和信息化局以"祁工信字[2020]第 29 号"文对本项目进行了备案。因此,本项目符合国家产业政策的要求。

本项目建设地点位于祁县贾令镇贾令村南 1.2km 处,在山西昌源酒业有限公司现有厂区内建设,不新增占地。不在祁县城市总体规划范围内,不违背祁县城市总体规划,不违背生态保护红线、环境质量底线、资源利用上线和环境准入负面清单"三线一单"。

本项目白酒制造项目,以高粱、稻壳等为原料,在陶制地缸或水泥池中发酵,蒸馏制取白酒。项目运营过程采取较为完善的环保措施,采用了相对先进的生产工艺,减少了废气污染物的排放量和污染物浓度,减轻了对大气的影响;生产废水经处理后排入祁县鸿宇市政污水处理有限公司;采取了有效的噪声控制措施,减少了对周围环境的噪声影响;对固废采取了安全有效的处理处置措施,避免了固废对环境的污染。为进一步降低工程建设的影响,厂内重视绿化工作,利用绿色植物作为治理工业污染的一种经济长效手段,发挥植物在吸收有害气体、净化空气、改善环境、保持生态平衡等方面的重要作用。本工程投产后不会对当地生态环境造成危害。综上所述,在落实本报告提出的各项环保措施的情况下,本项目的建设具备环境可行性。

9.2 建议

- (1)运行过程中严格执行本环评相关标准要求。加强生产设施及防治措施运行,定期对各项污染防治设施进行保养检修,清除故障隐患,确保污染物达标排放,不影响白酒生产工艺正常运行以及白酒产品质量。
- (2)加强设备、生产区的安全管理,防止泄漏、火灾、爆炸事故发生。建立安全管理制度、预警及应急方案、自动化的事故安全监控系统,定期组织职工开展预案演练,提高职工处理突发事故的能力,在演练过程中不断总结完善事故应急救援预案。

建设项目环境影响报告书审批基础信息表

1 粉立染質							建议坝	日外児家門	97仅百节甲加	基础信息表						
## 1987 1.00		ı	填表单位 (盖章)	:			山西昌源酒业有限公司			填表人(签字):			项目经办。	人(签字):		
## 100			項目	*		山西昌源酒业有限分	、司改建自动化灌装生产线	与地缸大曲车间项目	1			改建现有的麸曲酿	造二车间为地缸大曲百	· · · · · · · · · · · · · · · · · · ·	置库房为大曲酿油	也四、五、六
Transport Tran			項目化	码						建设内容		间,拆除现有办公 B沿名等内容 和	区改建为大曲酿造七年 有蚌曲酿造车间通过专	「何,新建白酒灌装车」 「何,新建白酒灌装车」	间,同时配套建设 在时的排加 25%	及相关辅助工程 建完成 后可知
			环评信用3	2台编号								次以世 寸门 世,元	生产麸曲原酒3	000t/a, 大曲原酒6000)t/a.	主元成和門棚
STREEM (1) STREET			建设	Lift.		山西省祁县贾令镇	贾令村(山西昌源酒业有	限公司现有厂区内)		建设规模		建成后:	本项目新增生产麸曲 年产白週15000t。其中	原酒3000t/a, 大曲原 b. 駐曲原酒9000t/a.	西6000t/a。 大曲原酒6000t/	a.
## TRANSPORTURAN 1/10/10 1			項目建设周	朔 (月)			2.0			建成后年产白酒15000t,其中: 鉄曲原酒9000t/					устания	
## 25-200-00-00-00-00-00-00-00-00-00-00-00-00							改扩建							2023年12月		
Part	建设		环境影响评价	行业类别			25 酒的制造			国民经济行业类型	及代码			1512白酒制造		
Button B	項目	現有工程的	排污许可证或排污	登记表稿号(改、扩建項	911407277	52450294D	现有工程排污许可管理		(小 你 III	19日由神教				新中華原日		
		目)			711407277	24302345	类別(改、扩建項目)	100	INDE	70 T 10 70	99			80 T3K-94 FI		
Record Section Secti			规划环评	F展情况						规划环评文件	名					
Table Tabl										規划环评审查意	见文号			无		
Record Color Reco			建设地点*	で企業を で無)	经度	112°20'22"	纬度	31	37°23′52"	占地面积(平方米)	73961.64	环评文件类别		环境影响报告	#5	
# PRICES P					起点经度	i	起点纬度			鉄点经度		终点纬度		工程长度 (千米)		
						-					元)		7.50		1.0	03%
## 1							法定代表人	-	没友仁		单位名称	山西千易耳	F保有限公司	统一社会信用代码		
Building Supplementary S			单位4	S#	山西昌源酒	业有限公司	主要负责人		9友仁				谢慧		18335	5101295
Teacher Teac	単位		# 31.6.7	e DE Ziaren						评价 单位	编制主持人					
The content of the			(组织机)	代码)	91140825MA	0MUB262W	联系电话	176	91077808			単型 (単型) 単生 (単生) 単		2015035140352014150	825000320	
## CASSADER OF COLORS OF C			過訊	雄				业有限公司)					山西省太原市万柏林	区迎泽西大街120号时	代天峰1605	
## CASSADER OF COLORS OF C					現有 (己産	レ程 在建)	本工程 (拟建成调整变更)			(已建+在	总件上程 建+拟建或调整变更	D			区域制	減量未進
## PROPERTY COLOR			75%	70	①实际排放量	②许可排放量	③預測排放量	④"以新带老	"削減量(吨/年)	⑥区域平衡管代本工程削減	@預測:	非放总量	O# 1	友権減量	(国家、省	級审批項目)
## 100 100 101				水量(万吨/年)		(m/4)				■ (ペ/千)				» T/		
## 100 100										2.625			1	.628	1	
## 25				気気	0.049		0.081		0.000		0.1	130	0	0.081		
## 1																
## 1					0.049		0.081		0.000		0.1	130	0	.081	-	
## 1		废水					-								1	
## PART 10 10 10 10 10 10 10 1							1								1	
	19														1	
### 100	杂物													-		
### 100	#		×	也特征污染物		i										
### 150	敷量		皮气量	(万标立方米/年)					0.000							
## 19 1	_															
### 15 25 10 10 10 10 10 10 10 10 10 10 10 10 10																
### 1					0.554		0.436		0.000		1.5	289	0.	436		
# 2						i										
# 2		废气				i								-		
### AMERICAN APPLIES AND AMERICAN APPLIES APPL				#		i										
### 2000																
																
																
			AIBR	在行來物"机化品	影响及主要措施		A-GL	4501	主要保护对象		-	# W L W	占用面积	T .		
日本学学生 日本			生态保护目标				名等	歌別	(目标)	上程影响情	× .	走骨占用	(公頃)	_		(# 14 V
### できない	****									核心区、缓冲区、	试验区			一班山 被组	补偿 □ 重建	(多选)
PASSES	的保护	区情况		牧用水水源保护区 (地表)					1	一级保护区、二级保护区、准保护区 一级保护区 一级保护区 准保护区						(多选)
大型 19 19 19 19 19 19 19 1				饮用水水源保护区(地下	5)				/					□ 遊出□ 被线□	补偿 □ 重建	(多选)
						i			,	18/0/8/25 / //	Carrier.					
1																
2				4			计量单位	有物有害物	現及含量(%)			W				
# 日本の						19000							9C/3 (N)	概分(%)		
1	主要原料。		1	高粱			t/a						SCA (N)	概分(%)		/Jm3/ a
		モ燃料信息	1 2 3	高粱 稻壳		6650 260	t/a t/a						<i>9</i> (7)	福分(%)		/JIIS/ 8
		及燃料信息	1 2 3	高粱 稻壳 玉米 麸皮		6650 260 620	t/a t/a t/a t/a						<i>φ.</i> η (11)	概分 (%))JIIS/ 8
#		吳繼料信息	1 2 3	高粱 稻壳 玉米 麸皮	,	6650 260 620	t/a t/a t/a t/a						gega (n)	養分(\$)))IIIS/ H
# (日本)		交燃料信息	1 2 3	高粱 稻壳 玉米 麸皮	ì	6650 260 620	t/a t/a t/a t/a						SCA (N)	養分(\$)		/JIIIS/ 8
日本語		交燃料信息	1 2 3 4 5	高粱 翻完 玉米 鼓皮 大曲粉		6650 260 620	t/a t/a t/a t/a t/a			1		然气	污染物种	か放		/JIII.5/ H
### ### ### ### ### #### ############			1 2 3 4 5 序号(编号)	高粱 翻完 玉米 鼓皮 大曲粉		6650 260 620 2640	t/a t/a t/a t/a t/a ********************	污染防治设施处理		1	天	络 气	污染物排	か放	882	
			1 2 3 4 5 序号(编号)	高粱 翻完 玉米 鼓皮 大曲粉		6650 260 620 2640	t/a t/a t/a t/a t/a ********************	污染防治设施处理		1	天	络 气	污染物排	か放	882	
Part	7.持拳沖	有组织排放(主要排放	1 2 3 4 5 序号(编号)	高粱 翻完 玉米 鼓皮 大曲粉		6650 260 620 2640	t/a t/a t/a t/a t/a ********************	污染防治设施处理		1	天	络 气	污染物排	か放	882	
大型	气污染治 与排放信	有组织排放(主要排放	1 2 3 4 5 序号(编号)	高粱 翻完 玉米 鼓皮 大曲粉		6650 260 620 2640	t/a t/a t/a t/a t/a ********************	污染防治设施处理		1	天	络 气	污染物排	か放	882	
1	气污染治 与排放信 息	有组织排放(主要排放	1 2 3 4 5 序号(编号)	高粱 翻完 玉米 鼓皮 大曲粉		6650 260 620 2640	t/a t/a t/a t/a t/a ********************	污染防治设施处理		1	天作	排放來度 (確定/立方米)	污染物排	か放	882	
1	气污染治 与排放信 息	有组织排放 (主要排放 口)	1 2 3 4 5 序号(编号) (高粱 翻完 玉米 鼓皮 大曲粉	持气筒高度(米)	6650 260 620 2640 序号(鏡号)	t/a t/a t/a t/a t/a ********************	污染胶剂设施处理 数率	序号 (義号)	上产设施	天/ 行杂物种类	排放來度 (確定/立方米)	荷殊物牌 柳萊建本 (千克/小时)	放 特放量 (吨/年)	882	
Process	气污染治与排放值 息	有组织排放 (主要排放 口)	1 2 3 4 5 5 6 (高粱 翻完 玉米 鼓皮 大曲粉	排气筒高度 (米) 无组织排剂	6650 260 620 2640 2640 序号(编号)	t/a t/a t/a t/a t/a ********************	門集時前被離处理 報準 1993年	序号(编号) 原物补类	上产设施 名称 特效地度(在至/2	天/ 行杂物种类	排放來度 (確定/立方米)	污染物排 排放速率 (干克/小时)	放 特放量 (吨/年)	第2 特放 机	
	气污染治 与排放信 息	有组织排放 (主要排放 口)	1 2 3 4 5 5 6 (高粱 翻完 玉米 鼓皮 大曲粉	排气筒高度 (米) 无组织排剂	6650 260 620 2640 2640 序号(编号)		門飛餅所设施处理 放車 1999年 1997年 1	序号 (编号) &物种类 氦气	1 名歌 名歌 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	天/ 行杂物种类	特放浓度 (電克/立方米)	污染物排 排放速率 (干克/小时)	放 特放量 (吨/年)	第2 特放 机	
	气污染治 与排放信 息	有组织排放 (主要排放 口)	1 2 3 4 5 5 序号(编号) (((高型 新完大 五米 最皮 大衛和 持款口名等	排气倾离度(米)	6650 260 620 2640 序号 (義号) 原母 (義号)	V/a V/a V/a V/a V/a P発酵前提施工艺	污染防治设施处理 发车 污染防治设施工艺	序号 (義号) 最物种类 気气 液化気	1 名歌 名歌 1.5 0.06	天!	等放液皮 (電光/立方外)	門張物牌 排放進率 (干克/小时) (思見行宗作 行歌物牌	療 特放器 (吨/年)	特款	F准名 奪
	气污染治与排放信息	有组织特放 (主要排放 口)	1 2 3 4 5 P号(编号) P号(编号)	高型 新完大 五米 最皮 大衛和 持款口名等	排气倾离度(米)	6650 260 620 2640 序号 (義号) 原母 (義号)	V/a V/a V/a V/a V/a P発酵前提施工艺	污染防治设施处理 发车 污染防治设施工艺	序号(编号) N物种类 気气 高化级 一种种的特殊	1 名歌 名歌 1.5 0.06	天!	等放液皮 (電光/立方外)	持點物榜 排放這年 (干克/小村) (思見污染性 行類物物榜 特数故意	療 特放器 (吨/年)	特款	F准名等
	气污染治 与排放值 息	有组织特放 (主要排放 口)	1 2 3 4 5 P号(编号) P号(编号)	高型 新完大 五米 最皮 大衛和 持款口名等	排气倾离度(米)	6650 260 620 2640 序号 (義号) 原母 (義号)	V/a V/a V/a V/a V/a P発酵前提施工艺	污染防治设施处理 发车 污染防治设施工艺	序号(编号) N物种类 気气 高化级 一种种的特殊	1 名歌 名歌 1.5 0.06	天!	等放液皮 (電光/立方外)	持點物榜 排放這年 (干克/小村) (思見污染性 行類物物榜 特数故意	療 特放器 (吨/年)	特款	F准名等
1 1 1 1 1 1 1 1 1 1	气污染治 与排放信 息	有组织特放 (主要排放 口)	1 2 3 4 5 P号(编号) P号(编号)	高型 新完大 五米 最皮 大衛和 持款口名等	排气倾离度(米)	6650 260 620 2640 序号 (義号) 原母 (義号)	V/a V/a V/a V/a V/a P発酵前提施工艺	污染防治设施处理 发车 污染防治设施工艺	序号(编号) N物种类 気气 高化级 一种种的特殊	1 名歌 名歌 1.5 0.06	天!	等放液皮 (電光/立方外)	污染物液 物放速率 (干克/小时) (恋及污染性 疗染物液 (恋及/分)	放 物放量 (年/年) 特放标准名称 的诗故标准名称 (四/年)	特款	F准名等
(利益を)	气污染治 与排放信 息	有组织特放 (主要排放 口)	1 2 3 4 5 	高號 新元 五水 新皮 大血粉 排放口名称 排放口名称	特代情高度 (米) 无组织特加 污水处理 废水	6650 256 620 2640 序号(報号) 序号(報号)		污染的价值地址增 製革 製作 污染的价值建工艺 名集	序号 (義号) 森物种类 磁性 成化 (他 「特別的情報 「特別的情報 「特別的情報 「特別的情報 「他 「中 「中 「中 「中 「中 「中 「中 「中 「中	1 全事 有 有 有 有 有 有 有 有	天!	等放液皮 (電光/立方外)	污染物物 物效应率 (节克/小时) (多臭污染) (多臭污染) 污染物物 污染(毒乳/分)	放 物效量 (电/年) 排放标准电路 特拉标准电路 (电/年) (2814554-53) 数 特效量 (电/年)	特款	F准名 奪
Process		有组织特放 (主要特故 口) 无组织特放 车间或生产 被推荐放口	1 2 3 4 5 	高號 新元 五水 新皮 大血粉 排放口名称 排放口名称	特代情高度 (米) 无组织特加 污水处理 废水	6650 256 620 2640 序号(報号) 序号(報号)		/ 污染胶油设施从增 频率 频率 / 污染胶油设施工艺 名称	序号 (编号) 配始种类 至气。 在代表 一种的种类的 是代表 一种的种类 是代表 一种的种类 是代表 一种的种类 是代表 一种的种类 是代表	1 名称 名称 名称 特技术度(毫克/) 15 00c 特放本内	为	特施液度(電気/立力未)	污染物的 物放速率 (干克/小时) (恶臭污染性 污染物质 (毒乳/炉)	放 物效量 (电/年) 排放标准电路 特拉标准电路 (电/年) (2814554-53) 数 特效量 (电/年)	93) 100	序准名称
Process		有组织特放 (主要特故 口) 无组织特放 车间或生产 被推荐放口	1 2 3 4 5 	高號 新元 五水 新皮 大血粉 排放口名称 排放口名称	特代情高度 (米) 无组织特加 污水处理 废水	6650 256 620 2640 序号(報号) 序号(報号)		/ 污染胶油设施从增 频率 频率 / 污染胶油设施工艺 名称	序号 (编号) 配始种类 至气。 在代表 一种的种类的 是代表 一种的种类 是代表 一种的种类 是代表 一种的种类 是代表 一种的种类 是代表	1 名称 名称 名称 特技术度(毫克/) 15 00c 特放本内	为	特施液度(電気/立力未)	污染物的 物放速率 (干克/小时) (恶臭污染性 污染物质 (毒乳/炉)	放 物效量 (电/年) 排放标准电路 特拉标准电路 (电/年) (2814554-53) 数 特效量 (电/年)	93) 100	序准名称
### (集件)		有组织特放 (主要特故 口) 无组织特放 车间或生产 被推荐放口	1 2 3 4 5 	高號 新元 五水 新皮 大血粉 排放口名称 排放口名称	特代情高度 (米) 无组织特加 污水处理 废水	6650 256 620 2640 序号(報号) 序号(報号)		/ 污染胶油设施从增 频率 频率 / 污染胶油设施工艺 名称	序号 (编号) 配始种类 至气。 在代表 一种的种类的 是代表 一种的种类 是代表 一种的种类 是代表 一种的种类 是代表 一种的种类 是代表	1 名称 名称 名称 特技术度(毫克/) 15 00c 特放本内	为	特施液度(電気/立力未)	污染物的 物放速率 (干克/小时) (恶臭污染性 污染物质 (毒乳/炉)	放 物效量 (电/年) 排放标准电路 特拉标准电路 (电/年) (2814554-53) 数 特效量 (电/年)	93) 100	序准名称
		有组织特放 (主要特故 口) 无组织特放 车间或生产 被推荐放口	1 2 3 4 5 	高號 新元 五水 新皮 大血粉 排放口名称 排放口名称	特代情高度 (米) 无组织特加 污水处理 废水	6650 256 620 2640 序号(報号) 序号(報号)		/ 污染胶油设施从增 频率 频率 / 污染胶油设施工艺 名称	序号(编号) 影性疾 医化形 一种形形性血处理水 童(电/小时) 青水处理/ 编号	1 名称 名称 名称 特技术度(毫克/) 15 00c 特放本内	为	特施液度(電気/立力未)	污染物的 排放证率 (干克/小岭) (怎见污染性 污染物质 排放效应 (毫克/升)	放	93) 100	序准名称
		有组织特放 (主要特效 (主要特效 元组织特效 车间或单次 (间数排 放)	1 2 3 4 5 / / / / / / / / / / / / / / / / / /	高型 括元 五聚 或皮 大泉都 特放口名称 特放口名称	特气情高度(米) 无组织物加 污水处理 废水 污染粉粉	(655) 3-60 6-20 2-640 亦号(編号) 亦号(編号) 源名称 4-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8	1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	75条的价度基处理 频率 频率 75条的价值工艺 名称 名称	序号 (编号) 高德特獎 至代表 「門房的物質產处理水 変 (現/小封) 「一方人处理」 在 一方人处理」 在 一方人处理」 在 一方人处理」 一	上产税施	方法 行為他种类 行為 行為 行為	得放成在 (電影/立方來) 他特殊	污染物的 排放速率 (干克/小时) (怎及污染性 行致物质 (毒克/丹) 污染物质 (毒克/丹)	放 等效量 (电/年) 等效标准名等 特別标准名等 (电/年) 法 转放量 (电/年)	933) 特赦也	F准名称 F准名称
### 25		有组织特放 (主要特效 (主要特效 元组织特效 车间或单次 (间数特 放)	1 2 3 4 5 / / / / / / / / / / / / / / / / / /	高型 括元 五聚 或皮 大泉都 特放口名称 特放口名称	特气情高度(米) 无组织物加 污水处理 废水 污染粉粉	(655) 3-60 6-20 2-640 亦号(編号) 亦号(編号) 源名称 4-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8	1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	75条的价度基处理 频率 频率 75条的价值工艺 名称 名称	序号 (编号) 高德特獎 至代表 「門房的物質產处理水 変 (現/小封) 「一方人处理」 在 一方人处理」 在 一方人处理」 在 一方人处理」 一	上产税施	方法 行為他种类 行為 行為 行為	得放成在 (電影/立方來) 他特殊	行旅物的 特放速率 (干完/小时) (思見/形) 行旅物榜 特款收度 (毫克/升) 行旅物榜 特款收度 (毫克/升)	放 等效量 (电/年) 等效标准名等 特別标准名等 (电/年) 法 转放量 (电/年)	933) 特赦也	F准名称 F准名称
1 約1-26項 布容除止器 一股回收收物		有组织特放 (主要特效 (主要特效 元组织特效 车间或单次 (间数特 放)	1 2 3 4 5 / / / / / / / / / / / / / / / / / /	高型 括元 五聚 或皮 大泉都 特放口名称 特放口名称	特气情高度(米) 无组织物加 污水处理 废水 污染粉粉	(655) 3-60 6-20 2-640 亦号(編号) 亦号(編号) 源名称 4-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8	1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	75条的价度基处理 频率 频率 75条的价值工艺 名称 名称	序号 (编号) 高德特獎 至代表 「門房的物質產处理水 変 (現/小封) 「一方人处理」 在 一方人处理」 在 一方人处理」 在 一方人处理」 一	上产税值	方法 行為他种类 行為 行為 行為	得放成在 (電影/立方來) 他特殊	行旅物的 特放速率 (干完/小时) (思見/形) 行旅物榜 特款收度 (毫克/升) 行旅物榜 特款收度 (毫克/升)	放 等效量 (电/年) 等效标准名等 特別标准名等 (电/年) 法 转放量 (电/年)	933) 特赦也	F准名称 F准名称
1 約1-26項 布容除止器 一股回收收物		有组织特放 (主要特效 (主要特效 元组织特效 车间或单次 (间数特 放)	1 2 3 4 5 / / / / / / / / / / / / / / / / / /	高型 括元 五聚 或皮 大泉都 特放口名称 特放口名称	特气情高度(米) 无组织物加 污水处理 废水 污染粉粉	(655) 3-60 6-20 2-640 亦号(編号) 亦号(編号) 源名称 4-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8	1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	75条的价度基处理 频率 频率 75条的价值工艺 名称 名称	序号 (编号) 高德特獎 至代表 「門房的物質產处理水 変 (現/小封) 「一方人处理」 在 一方人处理」 在 一方人处理」 在 一方人处理」 一	上产税值	方法 行為他种类 行為 行為 行為	得放成在 (電影/立方來)	行旅物的 特放速率 (干完/小时) (思見/形) 行旅物的 特款收度 (毫克/升) 行旅物的 特款收度 (毫克/升)	放 等效量 (电/年) 等效标准名等 特別标准名等 (电/年) 法 转放量 (电/年)	933) 特赦也	F准名称 F准名称
# 2		帝组织持放 (主要特故 (主要特故 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工	1 2 3 4 5 / / / / / / / / / / / / / / / / / /	高型 新元 五	持气候高度 (米) 无组织排加 污水处理 废水 污染物治	655 250 250 2640 2640 序号(編号) 序号(編号) 接近工艺	(4) (1/2) (1/2) (1/2) (1/2) (1/3) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4)	門外的所收施处理 門外的所收施处理 門外的所收施 工艺 名称 名称 名称	序号(编号)	上产设施 名称 名称 特拉米皮(电花/ 15 0.06 特放生内 类纳污水处理厂特效标准名 等	方為他种类	特別地皮 (電影/立方本) 特別 (電影/立方本)	行助物理 种放证率 (干完/小时) (思見/形) 行为物物 特款收度 (毫克/升) 行为物物 特款收度 (毫克/升)	放	93) 特赦者 特赦者	海名等
#		帝组织持放 (主要特故 (主要特故 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工	1 2 3 4 5 / / / / / / / / / / / / / / / / / /	高型	持气情高度 (米) 无组织排加 污水处理 废水 污染物治 污染物治	6650 260 260 2640 2640 序号(編号) 序号(編号) 移本工艺 投稿工艺	(4) (1/2) (1/2) (1/2) (1/3) (1/4)	門外的所收施处理 門外的所收施处理 門外的所收施 工艺 名称 名称 名称	序号 (编号) 原始种类 图气 (电介) 河外的管理系统理水量 (电介) 河外的管理系统理水量 (电介) 河外的管理系统理水量 (电介) 三元 (电介) 三元 (电介) 三元 (电介) 三元 (电介)	上产设施 名称 名称 特拉米皮(电花/ 15 0.06 特放生内 类纳污水处理厂特效标准名 等	方為他种类	特別地皮 (電影/立方本) 特別 (電影/立方本)	行助物理 种放证率 (干完/小时) (思見/形) 行为物物 特款收度 (毫克/升) 行为物物 特款收度 (毫克/升)	放	93) 特赦者 特赦者	
5 度过速材料 污水火用站 一般海珠港 / 0.5 6 生活垃圾 互上外企员者 一般海珠港 / 45 7 废业物油 设备维护 危险废物 900-214-08 0.7 保险库物常互回	門染治理 排放信息 口)	有组织棒放 (主架棒放 口) 无组织棒放 车和减生的 车和减生的 (氧) 总棒放弹棒 多) 总棒放弹棒 产	1 2 3 4 5 4 5 5 5 5 5 5 5	高型 新文	特代情高度 (米) 无框架等的 污水处理	6650 256 420 2640 2540 2540 序号(編号) 序号(編号) が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が成立 が が が が が が が 		門外的所收施处理 門外的所收施处理 門外的所收施 工艺 名称 名称 名称	序号 (编号) 此始种类 至气 在化水	上产税施 名称 特放浓度(施克/) 15 006 特放金向 受納門水处理「特放标准名 事	方為他种类	特別地皮 (電影/立方本) 特別 (電影/立方本)	行助物理 种放证率 (干完/小时) (思見/形) 行为物物 特款收度 (毫克/升) 行为物物 特款收度 (毫克/升)	放	93) 特赦者 特赦者	海 在
7 度音物油 设备维护 危险废物 900-214-08 0.7 俭俭·废物新石丽	門染治理 排放信息 口)	有組织棒放 (主射棒放 工 が を を は を は を を を を を を を を を を を を を を	1 2 3 4 5 4 5 / / / / / / / / / / / / / / / /	高型	特代情義度 (米) 无组织等剂 污水处理 废水 污染处理 方法处理 方法处理	(655) 250 260 260 2640 2640	1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	行脉的治发统处理 投票 投票 投票 投票 投票 投票 投票 投	序号 (编号) 原位种类 图气 图气 图气 图气 图气 图气 图 (例/中) 一方水处理 图 (例/中)	上产税施 名称 特放浓度(施克/) 15 006 特放金向 受納門水处理「特放标准名 事	方為他种类	特別地皮 (電影/立方本) 特別 (電影/立方本)	行助物理 种放证率 (干完/小时) (思見/形) 行为物物 特款收度 (毫克/升) 行为物物 特款收度 (毫克/升)	放	93) 特赦者 特赦者	海名家 海名家 海名家
	門染治理 排放信息 口)	有組织棒放 (主射棒放 工 が を を は を は を を を を を を を を を を を を を を	1 2 3 4 5 / / / / / / / / / / / / / / / / / /	高型	特性情義度 (米) 无框积等的 污水处理 废水 污染物 污染物 有殊動 有殊動 有效 方式 有效 一位 方式 方式 方式 方式 方式 方式 方式 方式 方式 方	(655) 260 260 2640 2640 2640	1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	行脉的治发统处理 投票 投票 投票 投票 投票 投票 投票 投	序号 (编号) 原位针线 原气 原位 (编号) 序列 (编号) 序列 (编号) / (元) / (元	上产税施 名称 特放浓度(施克/) 15 006 特放金向 受納門水处理「特放标准名 事	方為他种类	特別地皮 (電影/立方本) 特別 (電影/立方本)	行助物理 种放证率 (干完/小时) (思見/形) 行为物物 特款收度 (毫克/升) 行为物物 特款收度 (毫克/升)	放	93) 特赦者 特赦者	凍名祭 凍石外学校 凍石外学校 炭 炭 炭 炭 炭 炭 ළ
8 化验室房液、废包装 化验室 危险废物 900-047-49 0.05 REE版版物質甘中	污染治理 持數係息 口)	有組织棒放 (主射棒放 工 が を を は を は を を を を を を を を を を を を を を	1 2 3 4 5 / / / / / / / / / / / / / / / / / /	高受 新元 五來 五來 表來 表來 大島都 持放口名称 持放口名称 持放口名称 持放口名称 	持气简高度(米) 无框架物加 污水处理 企水 污染物治 一种	(655) 266 420 2640 (202) 2640 (403) (404)		/ / / / / / / / / / / / / / / / / / /	序号 (编号)	上产税施 名称 特放浓度(施克/) 15 0.06 特放金向 受納污水处理/特效标准名 事 一般周皮哲存何	方為他种类	特別地皮 (電影/立方本) 特別 (電影/立方本)	行助物理 种放证率 (干完/小时) (思見/形) 行为物物 特款收度 (毫克/升) 行为物物 特款收度 (毫克/升)	放	93) 特赦者 特赦者	海客等 基署外景处 是是是是
	染故要1) 理學 1)	有組织棒放 (主射棒放 口) 元組织棒放 中 地 油棒放 (間 放)	1 2 3 4 5 / / / / / / / / / / / / / / / / / /	高受 新元 五來 五來 表來 表來 大島都 持放口名称 持放口名称 持放口名称 持放口名称 	特性情義度 (米) 无框积等度 污水处理 废水 污珠粉質 特殊動物 特殊動物 大型 大型 大型 大型 大型 大型 大型 大型 大型 大	6650 260 260 2640 2640 2640 2640 2640 2640		/ / / / / / / / / / / / / / / / / / /	序号 (编号)	上产税施 名称 特放浓度(施克/) 15 0.06 特放金向 受納污水处理/特效标准名 事 一般周皮哲存何	方為他种类	特別地皮 (電影/立方本) 特別 (電影/立方本)	行助物理 种放证率 (干完/小时) (思見/形) 行为物物 特款收度 (毫克/升) 行为物物 特款收度 (毫克/升)	放	93) 特赦者 特赦者	原准名称 Fr准名称 Fr准名称 A E E E E E E E E E E E E E E E E E E

附件1: 委托函

委托书

山西千易环保有限公司:

根据《中华人民共和国环境保护法》、《建设项目环境保护管理条例》和《中华人民共和国环境影响评价法》,本项目需进行环境影响评价工作,建设单位委托贵公司进行<u>山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目</u>环境影响评价报告的编制。望接受委托后按有关规定及时开展工作。

委托方 (盖章): 山西昌源酒业有限公司

受托方 (盖章): 山西千易环保有限公司

年 月 日

附件 2: 《关于祁县良有酒业有限公司改建自动化灌装生产线与地缸大曲车间项目备案的通知》(祁工信字[2020]第 29 号)

祁县工业和信息化局文件

祁工信字 (2020) 第 29 号

关于祁县良有酒业有限公司改建自动化灌装生产线与地缸大曲车间项目备案的通知

祁县良有酒业有限公司:

你公司《关于改建自动化灌装生产线与地缸大曲车间项目 备案的请示》已收悉,经祁县工业和信息化局审核,同意备案。 现将有关事项通知如下:

- 一、项目名称: 改建自动化灌装生产线与地缸大曲车间项目。
 - 二、建设地址: 山西省晋中市祁县贾令镇贾令村
- 三、建设规模和内容:建设灌装车间及地缸大曲车间 8900 平 方米,改建自动化灌装生产线一条,购置地缸 4200 个及相关配套 设施。

四、总投资及资金来源:项目总投资 4600 万元,其中: 自筹资金 2000 万元,银行贷款 2600 万元。

五、经济效益及社会效益:项目投产后,可实现销售收入

6500 万元,实现利税 1300 万元。可新增就业岗位 100 个,转 化粮食 3000 吨,同时可有效带动养殖、运输等相关行业发展。

六、项目土地、节能、环保、消防、安全、劳动保护等都 要符合国家有关规定;严格落实建设项目安全设施和职业病防 护设施"三同时"制度;在本备案证有效期(24个月)内到 相关单位办理土地、规划、节能、评估、环保、消防、安全、 劳动保护等行政许可文件后方可开工建设,未取得相关许可文 件擅自开工所有责任由项目单位承担;在备案有效期内未开工 建设,可向我局申请延期,未申请延期,本备案文件自动失效。

附件 3: 企业名称准予变更登记通知书((祁)登记企变字[2020]第60号)

准予变更登记通知书

(祁)登记企变字[2020]第60号

祁县良有酒业有限公司:

经审查,提交的名称变更(原名称<u>祁县良有酒业有限公司</u>,变更后名称<u>山西昌源酒业有限公司</u>)登记申请,申请材料齐全,符合法定形式,我局决定准予变更登记。我局将于5个工作日内通知你单位换领营业执照。

2020年7月23里 审批专用章

(本通知适用于公司、非公司企业、分公司、非公司企业分支机构、其他营业单位的名称变更登记,企业凭此通知书办理有关手续,登记机关不再出具企业名称变更登记证明)

附件 4: 关于"山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目"备案情况的说明

山西昌源酒业有限公司

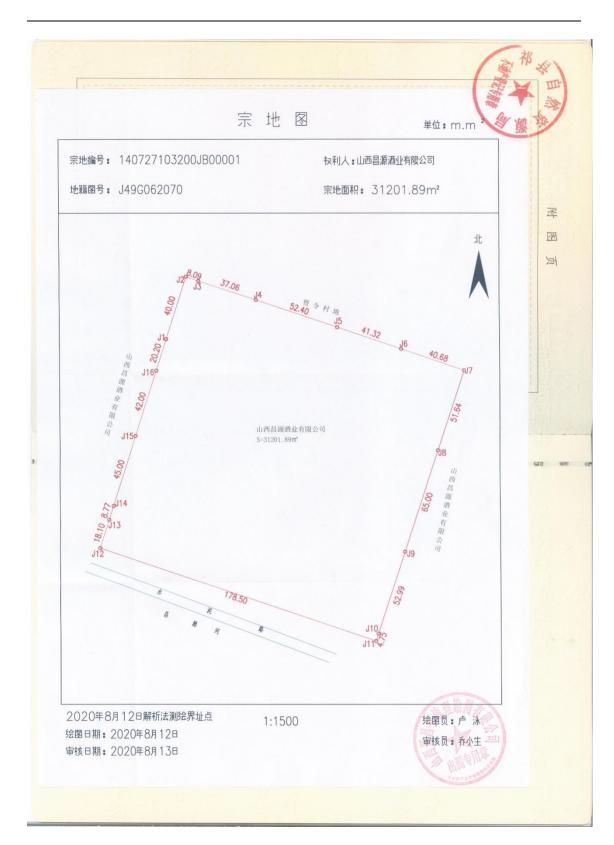
昌瀬酒业【2021】10号

关于"山西昌源酒业有限公司改建自动化灌装生产线 与地缸大曲车间项目"备案情况的说明

我公司于 2006 年 12 月 15 日取得年产 6000 吨白酒改扩建工程的 环评批复,于 2011 年 11 月 10 日通过环保验收;我公司按照环评批 复的规模 6000 吨/年(麸曲原酒)生产至今。为适应市场需求,我公 司决定改建自动化灌装生产线与地缸大曲车间,生产规模增加 9000 吨/年(包括麸曲原酒 3000t/a,大曲原酒 6000t/a)。祁县工业和信 息化局以祁工信字[2020]第 29 号对项目进行了备案。

我公司承诺,关于"改建自动化灌装生产线与地缸大曲车间项目" 所提供的相关文件均属实;如存在瞒报、谎报等情况及由此导致的一 切后果由本公司承担。

附件 5: 不动产权证


0202	本題 小列广秋弟 0001783 ち	B 记
利人山西	山西昌颂酒业有限公司	业务号:202008310017
共有情况 单独	单独所有	
林	祁县贾令镇贾令村	
不动产单元号 1407	140727103200GB00011W00000000	
权利类型 国有	国有建设用地使用权	大部門以外 人名斯里
权利性质 出让	***	
除工业	大学 经	《 學學養情報》 人名阿里
和 1608	16089, 82m²	
使用期限国有	国有建设用地使用权 2019年7月2日 起 2069年7月1日 止	文·智···································
原	原不动产权证号:晋(2019)祁县不动产权第0000722号原企业名称:祁县良友酒业有限公司	
权利其他状况	大学を記述を信任していた。	を
	多位版K 为	大品 经银银银铁 女 人名

. ii										
金	业务号:202008310023	アンドはは	· · · · · · · · · · · · · · · · · · ·		以同性	**	多种學學是		長性赤枝文	を記している。
不动产权第 0001784 号	公司		贯令村	140727103200GB00008W00000000	固有建设用地使用权		人 人名西斯克斯斯 女 一次	, III.	国有建设用地使用权 2010年8月1日 起 2060年7月31日 止	原企业名称: 祁县良有酒业有限公司
) 柳景	山西昌源酒业有限公司	单独所有	祁县贾令镇贾令村	727103	1建设)	出让	工业用地	26669.93m²	主建设	6. 10 10 10 10 10 10 10 10 10 10 10 10 10

业务号:202009010032				は日本には、一人の行為をは、一人の行為をは、一人の行為として、「一人の行為」という。「一人の行為」という。「一人の行為」という。「一人の行為」という。「一人の行為」という。「一人の行為」という。「一人の行為
山西昌源潛业有限公司 ¹ 单独所有	祁县贾令镇贾令村 140727103200JB00001W00000000	集体建设用地使用权批准拨用工业用地	31201.89㎡ 原不动产权证号: 将集用(2008)第JQ0701001号 原企业名称: 祁县良有酒业有限公司	大学是这个位置。 "是整化物体",一个一个一种,一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种

宗 地 图 单位: m.m 权利人:山西昌源酒业有限公司 号: 140727103200GB00008 宗地面积: 26669.93m² 号: J49G062070 率 网 北 页 山西昌源酒业有限公司 S=26669. 93m² J16 J15 16.04 J14 46.83 J13 18.17 J12 日期: 2020年8月28日 绘图员:卢泳 1:1500

2020/7/23

国家企业信用信息公示系统网址: http://172.19.2.1:9080/TopIcis/CertTabPrint.do

附件 7: 《关于祁县良有酒业有限公司年产 6000 吨白酒改扩建工程环境影响报告书的批复》(祁环字[2006]58 号)

祁环字[2006]58号

关于祁县良有酒业有限公司年产6000吨白酒 改扩建工程环境影响报告书的批复

一三三言酒业有限公司:

不公司报批的在祁县贾令镇贾令村南年产6000吨白酒改扩建工程环境是完善书,经我局技术审查,批复如下:

一、"报告书"针对你公司的白酒生产项目的生产工艺及技术特点, 三适查分析了白酒生产对大气及水环境的影响,明确提出了实现污染物 二三部放和总量控制的污染防治对策、措施,该"报告书"可作为你公司 三三5000吨白酒改扩建工程设计建设和竣工验收的环保依据。

二、同意"报告书"提出的各项环保工程措施,在该项目的设计和建一二、必须逐项落实,锅炉要配套湿式水膜除尘器且加碱脱硫,废水采用A/O生工艺净化装置,以确保投产后各项污染物实现稳定达标排放。

三、项目竣工后,尽快申请环保部门竣工验收。

二00六年十二月十五日

三题词: 建设项目 环境影响评价 批复

分报: 市环保局, 县政府。

三县环境保护局办公室

2006年12月15日印发

附件 8: 祁县良有酒业有限公司年产6000吨白酒改扩建工程建设项目竣工环境保护验收组意见(验[2011]015号)

表三 验收组意见

验[2011]015号

2011年11月10日: 祁县环保局主持召开了祁县良有酒业有限公司年产6000吨白酒改扩建工程环保竣工验收会议. 参加会议的有环保局有关股室负责人、外聘专家、业主单位的有关领导和技术人员。相关人员听取了企业的建设情况、监测单位监测情况,查阅了企业有关环保竣工验收资料,深入现场检查了环保设施建设及运行情况,经过认真讨论和评议后形成如下意见:

该企业在项目建设过程中能严格执行配套建设的环保设施与主体工程同时设计、同时施工、同时投产使用的"三同时"制度。认真执行国家的有关环保法律法规,有环保机构,环保管理制度和责任制度健全,将环境管理纳入企业生产管理和考核之中,排放的主要污染物达到国家有关排放标准。

对照环保竣工验收的有关标准, 同意该企业通过环保竣工 验收。

附件 10: 晋中市生态环境局祁县分局责令改正违法行为决定书(祁生环改违 觉字[2021]013 号)

晋中市生态环境局祁县分局 责令改正违法行为决定书

祁生环改违决字 (2021) 013 号

山西昌源酒业有限公司:

统一社会信用代码: 91140727762450294D

地址: 祁县贾令镇贾令村

法定代表人: 段友仁

2021年 04月 10日, 我局对你公司进行了调查, 发现你公司实施了以下环境违法行为:

你公司改建灌装生产线项目未经环评审批投入建设,目前新建灌 装车间主体已建成,灌装机、洗瓶机已安装。

以上事实有 <u>2021</u> 年 <u>04</u> 月 <u>10</u> 日祁县分局现场检查笔录、调查询问 笔录、现场照片等证据为凭。

上述行为违反了《中华人民共和国环境影响评价法》第二十二条第一款的规定。

依据<u>《中华人民共和国环境影响评价法》第三十一条第一款</u>的规定,现责令你公司改建灌装生产线项目立即停止建设。

我局将对你公司改正违法行为的情况进行监督。如你公司拒不改 正上述环境违法行为,逾期不申请行政复议,不提起行政诉讼,又不 履行本决定的,我局将依法申请人民法院强制执行。

你公司如对本决定不服,可在收到本决定书之日起六十日内向晋中市生态环境局或者祁县人民政府申请行政复议,也可在收到本决定书之日起六个月内向介休市人民法院提起行政诉讼。如你公司拒不改正上述违法行为,我局将申请人民法院强制执行。

晋中市生态环境局祁县分局 行政处罚听证告知书

祁生环罚听告字 〔2021〕013号

山西昌源酒业有限公司:

<u>2021</u>年 <u>04</u>月 <u>10</u>日, 我局对你公司进行了调查, 发现你公司 实施了以下环境违法行为:

你公司改建灌装生产线项目未经环评审批投入建设,目前新建灌装车间主体已建成,灌装机、洗瓶机已安装。

有 2021 年 04 月 10 日祁县分局现场检查笔录、调查询问笔录、现场照片等证据为凭。

你公司的上述行为违反了<u>《中华人民共和国环境影响评价法》</u>第二十二条第一款:"建设项目的环境影响报告书、报告表,由建设单位按照国务院的规定报有审批权的生态环境主管部门审批。"之规定,依据《中华人民共和国环境影响评价法》第三十一条第一款:"建设单位未依法报批建设项目环境影响报告书、报告表,或者未依照本法第二十四条的规定重新报批或者报请重新审核环境影响报告书、报告表,擅自开工建设的,由县级以上生态环境主管部门责令停止建设,根据违法情节和危害后果,处建设项目总投资额百分之一以上百分之五以下的罚款,并可以责令恢复原状;对建设单位直接负责的主管人员和其他直接责任人员,依法给予行政处分。"和《山西省生态环境系统行政处罚自由裁量基准(试行)》建设项目类 J-1 建设项目未批先建的罚款幅度裁定之规定,我局拟对你公司的行为作出如下行政处罚:

- 1. 现责令你公司改建灌装生产线项目立即停止建设。
- 2. 处罚款人民币伍万贰仟零伍拾元整。

根据《中华人民共和国行政处罚法》第三十二条的规定,你 公司有权进行陈诉和申辩,可以在收到本告知书之日起7日内向我 局提出陈述和申辩;逾期未提出陈述和申辩的,视为你公司放弃陈 述和申辩权利。

其中对你公司拟作出的 处罚款人民币伍万贰仟零伍拾元整, 符合听证条件。根据《中华人民共和国行政处罚法》第四十二条的 规定, 你公司有要求举行听证的权利。你公司如果要求听证, 可以 在收到本告知书之日起三日内向我局提出听证申请;逾期未提出听 证申请的, 视为你公司放弃听证要求。

联系人: 程海鹏

电 话: 0354-3822817

地 址: 晋中市生态环境局祁县分局 邮政编码: 030900

	725	02170/32		一色也	公文代本	玄 表 模。	7=1	者が多い。	13/		
	XIV 6005725	灰門決定书編号 存在好配各一(2021) 0/3 超		备注			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8拾佐万刻什要哪 拾零元要角零分	17		
没款收据	F / 23 E	决定书编号 2	# H H H H H H H H H H H H H H H H H H H	角分	00		0	到午季 城	收款人	复核员一	
山西省代牧野	. 204	1 5000	K K	千百十万千百十元角	52050		\$ 52050	有创始任为			
山西省	收款日期	行政机关智中本座委托塔局和努力局	这数单位 山石多溪泊北海晚公	4	143	TOO.	晋中,		海上 左		
		图中产生	E HOD	项目	罚没款金额	加收和款金额	か、作い	金额人民币(大学)	X		

附件 11: 天然气气质分析报告

长庆油田分公司第二采气厂天然气气质分析报告

样品编号: 201902084

取釋地点: 檜林天然气处理厂

取样位置:

陝京二线 李容

分析人:

国意修改 取样日期:

分析日期: 取样方式: 复核人:

2082.28 申核人:

2019年2月24日 2019年2月24日

粉瓶

经类 (摩)	下分數。y36)	非烃类(摩尔分数,	y%)				
CH ₄ (甲烷)	94.230	He (気)	0.031				
C ₂ H _e (乙烷)	2.863	H ₂ (氣)	0.012				
C ₃ H ₈ (丙烷)	0.421	O ₂ (氣)	0				
iC ₄ H ₁₀ (界丁烷)	0.067	N ₂ (M)	0.287				
nC ₄ H ₁₀ (正丁烷)	0.066	CO₂ (二氟化碳) (≤3.0%)*	1.920				
iCsH ₁₂ (异戊烷)	0.028	H ₃ S(mg/m³)(≤20)*	-				
nC ₅ H ₁₂ (正戊烷)	0.013	H ₂ O (水) 含量 (水, 10 ⁻⁶)					
C6+ (碳6+)	0.062	总磁(mg/m³)(≤200)*					
总经	97.750						
相对密度	0.597	密度(kg/m³)	0.72				
临界温度(K)	196.8	能界压力(MPa)	4.66				
高位热量 ()	4J/m³) (≥31,4)*	37.6					
飯位热1	it (MJ/m³)	33,9					
	Ð	人 行 标 准					
技术指标	"*"为G817820-20	12标准规定的天然气技术指标——二	* :				
参比条件	气体体积标准参比分 11062-2014	条件为101.525kpa。26℃,计量参数	的计算依据GB/T				
组份分析	采用《关燃气的组织	文分析 气料色谱法》(GB/T13610-	2014)				
硫化塑	CGB/T 11050, 1-20						
息報	采用《天然气 含硫 》(GB/T 11060.9	化合物的测定 第8部分。用紫外类为 2012	元允克法制定总統含量				
水含量		自量的测定。电解法分析及(SY/T 75	07-2016)				
A 22							

附件 12: 山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目 监测报告

监测报告

蓝源成环监(普)字(2021)第50171号

项目名称: 山西昌源酒业有限公司改建自动化罐装生产线

与地缸大曲车间项目监测

委托单位:______山西昌源酒业有限公司

山西蓝源成环境监测有限公司 2021年7月29日

声明

- 1、委托单位在委托前应说明监测目的,凡是污染事故调查、环保设施验收监测、仲裁及鉴定监测需在委托书中说明,并由我单位按规范采样、监测。
- 2、由委托单位自行采样送检的样品,报告只对送检样品负责,不对样品来源负责。
- 3、报告无审核、批准人签章无效,报告涂改无效,报告无本公司公章、骑鋒章及 CMA 章无效。
- 4、本报告未经同意不得用于广告宣传、不得部分复制本报告。
- 5、对检测报告若有异议,应于收到报告十五日内向检验单位提出,逾期不予受理。
- 6、需要退还的样品及其包装物可在收到报告十五日内领取。逾期不领者,视弃样处理。

项 目 名 称: 山西昌源酒业有限公司改建自动化罐装生产线 与地缸大曲车间项目监测

监 测 单 位: 山西蓝源成环境监测有限公司

总 经 理:张鹏

项目负责人:张鹏

报告编写人:师丽英

报告校对: 张林

报告审核: 此為

报告批准:配加入

山西蓝源成环境监测有限公司

地址:山西省太原市尖草坪区选煤街22号太原选煤厂南门东侧联排房

电话: 18635159290 邮箱: SXLYCHJJC @163.com

目 录

白	£务来源	1
1	、监测内容	1
1.	1 点位情况	1
1.	2 执行标准	2
2	、监测质量保证	2
2.	1 监测方法	2
	2 监测主要仪器及人员	
2.	3 质量保证和质量控制	7
3.	监测结果	14
3.	1 环境空气监测结果	14
3.	2 地下水监测结果	16
3.	3 地表水监测结果	17
3.	3 噪声监测结果	18

检验检测机构 资质认定证书

证书编号:160412050983

名称:山西蓝源成环境监测有限公司

地址:太原市尖草坪区选煤街22号太原选煤厂南门东侧联排房

经审查, 你机构已具备国家有关法律、行政法规规定的基 本条件和能力, 现予批准, 可以向社会出具具有证明作用的数 据和结果,特发此证。资质认定包括检验检测机构计量认证。 检验检测能力及授权签字人见证书附表。

许可使用标志

160412050983

发证日期: 2016年06月24日

有效期至: 2022年06月23日

发证机关: 山西省质量技术监督局

本证书由国家认证认可监督管理委员会监制,在中华人民共和国境内有效。 提示: 1. 应在法人董格证书有效期内开展工作。2. 应在证书有效期届满前 3个月提出复查申请,该期不申请此证书注信、

任务来源

受山西昌源酒业有限公司委托,山西蓝源成环境监测有限公司依据《山西昌源酒 业有限公司改建自动化罐装生产线与地缸大曲车间项目监测任务通知单》中的相关内 容,于2021年7月15日~7月22日对该项目进行了监测,监测报告如下:

1、监测内容

地下水、地表水、环境空气和噪声

1.1 点位情况

表 1-1	1	监测点位、项目、频次一览表	
监测 类别	监测位置	监测项目	监测频次及要求
	贾令村	色度、SS、总硬度、溶解性总固体、 耗氧量、氨氮、亚硝酸盐氮、挥发酚、	
	厂区内	氰化物、六价铬、砷、汞、铅、镉、铁、锰、氟化物、氯化物(Cl')、 硝酸盐氮、硫酸盐(SO, ^{L'})、K ⁺ 、	监测1天,采样1次, 同时记录井深、水位、水温
地下水	厂区西北侧	Na ⁺ 、Ca ²⁺ 、Mg ²⁺ 、CO ₃ ²⁻ 、HCO ₃ ⁻ 、 苗落总数、总大肠菌群	
地下水「	厂区东北侧		
	沙堡村		监测1天, 记录井深、水位
	灌溉水井		
*	排放口上游 500m	pH、色度、LAS、SS、COD、 BOD ₅ 、溶解氧、氨氮、总磷、	
地表水	排放口下游 500m	新化物、总氮、铜、锌、铅、镉、 六价铬、砷、硒、汞、氰化物、 石油类、挥发酚、硫化物、	连续监测3天, 每天1次。 同时记录水温
	排放口下游 1000m	高锰酸盐指数、类大肠菌群	
环境	厂区内	TCD II.C MII	连续监测 7 天, TSP 日均值每 天采样 24 小时, H ₂ S、NH ₃ 小
空气	沙堡村	TSP、H ₂ S、NH ₃	时值,每天采样 4 次。监测期间同时记录各点位风向、风速、 气温和气压等常规气象要素。
噪声	厂界四周 共设4个监测点	I.eq. L ₁₀ , L ₅₀ , L ₉₀ , SD	监测 1 天, 昼、夜各 1 次

1.2 执行标准

表 1-2

执行标准一览表

W 1-11	VII WIE 光水		
监测类别	执行标准	污染物	标准限值
地下水	地下水质量标准 GB/T 14848-2017	表 1	Ⅲ类标准
地表水	地表水环境质量标准 GB 3838-2002	表 1	V类标准
*	环境空气质量标准 GB 3095-2012 二级标准值	TSP	300μg/m ³
环境空气	空体型小小区从上下层型上在空梯 ************************************	NH ₃	200μg/m ³
	环境影响评价技术导则大气环境 HJ 2.2-2018 附录 D	H ₂ S	10μg/m ³
噪声	声环境质量标准 GB 3096-2008 2 类标准值		昼间 60dB (A)
'朱尸	户 小 况 原 里 价 作 UB 3096-2008 2	L _{eq}	夜间 50dB (A)

2、监测质量保证

2.1 监测方法

表 2-1-1

采样方法一览表

序号	监测类别	采样方法依据 (标准名称及编号)	备注
1	地下水	地下水环境监测技术规范 HJ 164-2020	
2	地表水	地表水和污水监测技术规范 HJ/T 91-2002	
3	环境空气	环境空气质量手工监测技术规范 HJ 194-2017	
4	噪声	声环境质量标准 GB 3096-2008	

表 2-1-2

环境空气分析方法一览表

序号	监测项目	分析方法依据 (标准名称及编号)	分析方法 检出限
1	TSP	重量法 GB/T 15432-1995	0.001mg/m ³
2	NH ₃	纳氏试剂分光光度法 HJ 533-2009	0.01mg/m ³
3	H ₂ S	亚甲基蓝分光光度法 《空气和废气监测分析方法》第四版 第三篇第一章十一(二)	0.001mg/m ³

表 2-1-3

地下水分析方法一览表

表 2	-1-3	地下水分析方法一览表			
序号 监测项目		分析方法依据 (标准名称及编号)	分析方法 检出限		
1	色度	色度 铂钴标准比色法 GB/T5750.4-2006 1.1			
2	SS	重量法 GB 11901-89	5mg/L		
3	总硬度	EDTA 络合滴定法 GB/T 5750.4-2006 7.1			
4	溶解性总固体	称量法 GB/T 5750.4-2006 8.1			
5	耗氧量	酸性高锰酸钾滴定法 GB 5750.7-2006 1.1	0.05mg/L		
6	挥发酚	4-氨基安替吡啉三氯甲烷萃取分光光度法 GB/T 5750.4-2006 9.1	0.002mg/L		
7	氨氮	纳氏试剂分光光度法 GB/T 5750.5-2006 9.1	0.02mg/L		
8	亚硝酸盐氮	重氮偶合分光光度法 GB/T 5750.5-2006 10.1	0.001mg/L		
9	氟化物	离子色谱法 GB/T 5750.5-2006 3.2	0.1mg/L		
10	氯化物 (CI ⁻)	离子色谱法 GB/T 5750.5-2006 2.2	0.15mg/L		
11	硝酸盐氮	离子色谱法 GB/T 5750.5-2006 5.3	0.15mg/L		
12	硫酸盐(SO ₄ ²⁻)	离子色谱法 GB/T 5750.5-2006 1.2	0.75mg/L		
13	氰化物	异烟酸-吡唑啉酮分光光度法 GB/T 5750.5-2006 4.1	0.002mg/L		
14	六价铬	二苯碳酰二肼分光光度法 GB/T 5750.6-2006 10.1			
15	神	氧化物原子荧光法 GB/T 5750.6-2006 6.1			
16	汞	原子荧光法 GB/T 5750.6-2006 8.1			
17	铁	火焰原子吸收分光光度法 GB/T 5750.6-2006 2.1	0.3mg/L		
18	锰	火焰原子吸收分光光度法 GB/T 5750.6-2006 3.1	0.1mg/L		
19	镉	无火焰原子吸收分光光度法 GB/T 5750.6-2006 9.1	0.5μg/L		
20	铅	无火焰原子吸收分光光度法 GB/T 5750.6-2006 11.1	2.5µg/L		
21	钠	离子色谱法 GB/T 5750.6-2006 22.2	0.06mg/L		
22	钾	离子色谱法 GB/T 5750.6-2006 22.2	0.16mg/L		
23	镁	离子色谱法 GB/T 5750.6-2006 22.2	1.2mg/L		
24	钙	离子色谱法 GB/T 5750.6-2006 22.2	1.7mg/L		
25	CO ₃ ²⁻	酸碱滴定法 DZ/T 0064.49-1993			
26	HCO ₃	酸碱滴定法 DZ/T 0064.49-1993			
27	菌落总数	平皿计数法 GB/T 5750.12-2006 1.1			
28	总大肠菌群	多管发酵法 GB/T 5750.12-2006 2.1			

表 2-1-4 地表水分析方法一览表

衣 2-	1-4	地农小分价方法一见农	
序号	监测项目	分析方法检出限	
1	рН	玻璃电极法 GB 6920-86	0.01
2	色度	水质色度的测点-铂钴比色法 GB 11903-89	5度
3	溶解氧	碘量法 GB 7489-87	0.2mg/L
4	SS	重量法 GB 11901-89	5mg/L
5	高锰酸盐指数	高锰酸钾滴定法 GB 11892-89	0.5mg/L
6	COD	重铬酸盐法 HJ 828-2017	4mg/L
7	BOD ₅	稀释与接种法 HJ 505-2009	0.5mg/L
8	氨氮	纳氏试剂分光光度法 HJ 535-2009	0.025mg/L
9	总氮	碱性过硫酸钾消解-紫外分光光度法 HJ 636-2012	0.05mg/L
10	总磷	钼酸铵分光光度法 GB 11893-89	0.01mg/L
11	氟化物	离子选择电极法 GB 7484-87	0.05mg/L
12	六价铬	二苯碳酰二肼分光光度法 GB 7467-87	0.004mg/L
13	氰化物	异烟酸-吡唑啉酮分光光度法 HJ484-2009	0.004mg/L
14	挥发酚	4-氨基安替比林分光光度法 HJ 503-2009	0.0003mg/L
15	LAS	亚甲蓝分光光度法 GB 7494-87	0.05mg/L
16	硫化物	亚甲基蓝分光光度法 GB/T 16489-1996	0.005mg/L
17	硒	原子荧光法 HJ 694-2014	0.4ug/L
18	砷	原子荧光法 HJ 694-2014	0.3ug/L
19	汞	原子荧光法 HJ 694-2014	0.04ug/L
20	铜	原子吸收分光光度法 GB 7475-87	0.05mg/L
21	锌	原子吸收分光光度法 GB 7475-87	0.05mg/L
22	镉	无火焰原子吸收分光光度法 GB/T 5750.6-2006 9.1	0.5μg/L
23	铅	无火焰原子吸收分光光度法 GB/T 5750.6-2006 11.1	2.5μg/L
24	石油类	紫外分光光度法 HJ 970-2018	0.01mg/L
25	粪大肠菌群	多管发酵法 HJ 347.2-2018	20MPN/L

2.2 监测主要仪器及人员

表 2-2-1	监测主要位	义器一览表		
监测项目	仪器名称及型号	仪器编号	仪器技术指标	检定/校准 有效期
рН	PHS-3E 型 PH 计	LYCFX-24/02	pH: (0∼14) pH±0.01pH	2021.10
溶解性总固体	电子天平 CP124C	LYCFX-46	0~120g 0.0001g	2021.10
总硬度	酸式滴定管	LYCDD-01	0.1ml-25ml ±0.1ml	
耗氣量	酸式滴定管	LYCDD-06	0.1ml-25ml ±0.1ml	
氨氮	可见分光光度计 V-5600	LYCFX-06	320~1000nm ±0.5nm	2021.10
挥发酚	721 分光光度计	LYCFX-60	320~1000nm ±0.5nm	2021.10
硫化物	V-1800 可见分光光度计	LYCFX-76	320~1000nm ±0.5nm	2021.10
LAS、总磷	721 可见分光光度计	LYCFX-60	320~1000nm ±0.5nm	2021.10
亚硝酸盐氮、 六价铬、氰化物	721 可见分光光度计	LYCFX-59	320~1000nm ±0.5nm	2021.10
硝酸盐氮、氟化物、 氟化物 (CI)、 硫酸盐 (SO ₄ ²⁻)	离子色谱仪 ICS-1100	LYCFX-02	0-10000 μS 0.005μS	2021.11
K ⁺ , Na ⁺ , Ca ²⁺ , Mg ²⁺	离子色谱仪 ICS-600	LYCFX-66	0-10000 μS 0.005μS	2022.4
砷、汞、硒	原子荧光光谱仪 SK-2003A	LYCFX-04	0~200 ng/ml RSD<0.6%	2021.10
铁、锰、铅、 镉、铜、锌	原子吸收光谱仪 ICE3500	LYCFX-01	190~800nm < 2.0%	2021.11
CO ₃ ²⁻ 、HCO ₃ ⁻	酸式滴定管	LYCDD-10	0.1ml-25ml ±0.1ml	
菌落总数	菌落计数器 TYJ-2A	LYCFX-40	0-999 光学放大 8X	
总大肠菌群	显微镜 XSP-2CA	LYCFX-41	目镜 10:160-100000 目镜 16:256-160000	2021.10
总氮	紫外可见分光光度计 UV-6100	LYCFX-05	190∼1100nm ±0.3nm	2021.10
	酸式滴定管	LYCDD-03	0.1ml-25.00ml ±0.1ml	
COD		LYCDD-04	0.1ml-50.00ml ±0.1ml	
BOD5、溶解氧	酸式滴定管	LYCDD-05	0.1ml-25.00ml ±0.1ml	
高锰酸盐指数	酸式滴定管	LYCDD-06	0.1ml-25.00ml ±0.1ml	
氟化物	SX380F-1 型氟度计	LYCFX-86	0.0∼±2000mV ±0.01%	2021.8

(续)表 2-2-1

监测主要仪器一览表

(头) 水 2-2-1	in.	则土女认奋一页	1.农	
监测项目	仪器名称及型号	仪器编号	仪器技术指标	检定/校准 有效期
石油类	紫外可见分光光度计 1780	MLJC-A013	(200-1000) nm	2021.11
SS	CP124C 电子天平	LYCFX-46	0∼120g 0.0001g	2021.10
粪大肠菌群	电热恒温培养箱 HPX-9082MBE	LYCFX-36	+5℃~60℃ ±0.5℃	2021.11
NH ₃	可见分光光度计 V-5600	LYCFX-06	320~1000nm ±0.5nm	2021.10
H_2S	可见分光光度计 V1800	LYCFX-76	325~1000nm ±0.8nm	2021.10
TSP	电子天平 ATY224	LYCFX-61	0~120g 0.0001g	2021.10
TSP、NH ₃ 、H ₂ S	环境空气颗粒物综合 采样器 ZR-3922	LYCDQ-62/63	尘路: 60-130L/min 气路: 0.1-1.0L/min	2021.10
气压	空盒气压表 DYM3	LYCDQ-75	800hPa~1060 hPa	2021.7
风向风速	电接式风向风速仪 16026	LYCDQ-58	0-30 米/秒误差不大于 ± (30±0.03V) 米/秒	2021.8
噪声	多功能声级计 AWA5688	LYCZS-05	30dB~133dB	2021.10
宋尸	声级计校准器 AWA6022A	LYCZS-13	94.0 dB±0.4 dB	2021.8

表 2-2-2 监测人员及上岗证号一览表

		1144/14	IN MI V NOW		
监测人员	张鹏	魏永明	史红瑞	师丽英	张鹏云
上岗证号	LYCJC2018012	LYCJC2018013	LYCJC2018015	LYCJC2018020	LYCJC2018010
监测人员	张文彬	齐睿	李耀	杨日红	孙美玲
上岗证号	LYCJC2018018	LYCJC2018021	LYCJC2018007	LYCJC2018008	LYCJC2018011
监测人员	马一辰	王炎娇	陈辉	王 鸽	史方倩
上岗证号	LYCJC2019005	LYCJC2019008	LYCJC2018001	LYCJC2020012	LYCJC2020004
监测人员	赵瑞芳	杜月勤	王晓宙	郭海英	马佩坤
上岗证号	LYCJC2020002	LYCJC2020009	LYCJC2020008	LYCJC2021001	LYCJC2019004
监测人员	解凯睿				
上岗证号	LYCJC2019001				

2.3 质量保证和质量控制

2.3.1 现场监测质量保证

环境空气

- 1、采样布点、采样方式、采样仪器、采样时间、采样流量等内容严格执行《环境空气质量手工监测技术规范》(HJ 194-2017)的要求。
- 2、采样前、后都要按规定用已检定的标准气体流量计进行采样器流量校准,并 做好校准记录,流量误差应不大于5%。
- 3、采样前对采样系统的气密性进行认真检查,确认无漏气现象后方可进行采 样。
 - 4、环境空气 TSP、H2S、NH3 采集现场空白。

地下水

- 1、严格按照《地下水环境监测技术规范》HJ 164-2020 进行样品的采集、保存与运输。
 - 2、采集现场空白样品。

地表水

- 1、严格按照《地表水和污水监测技术规范》(HJ/T 91-2002)的要求进行采样点位的布设及样品的采集。
 - 2、采集现场平行样品。

噪声

- 1、厂界噪声的测量按照《声环境质量标准》(GB 3096-2008)中的国家标准方法进行,测点选在工业企业厂界外1米、高度1.2米以上,距任一反射面距离不小于1m的位置。
- 2、每次测量前、后必须在测量现场进行声学校准,其前、后示值偏差不得大于 0.5dB, 否则测量结果无效。
 - 3、测量应在无雨雪、无雷电天气、风速为5米/秒以下进行。
 - 4、测量应在被测声源正常工作时间进行,同时注明当时的工况。

2.3.2 实验室质量控制

地下水

- 1、每批样品加测10%以上的平行双样和加标回收率测定。
- 2、对监测项目镉、砷、锰加测自控样,要求与样品同步测定。
- 3、样品的保存方法和保存时间要按照《地下水环境监测技术规范》HJ 164-2020 中的规定执行,不能超过规定的保存时间。

地表水

- 1、每批样品加测10%以上的平行双样和加标回收率测定。
- 2、对监测项目 BOD_5 、总磷、COD、铜、镉、铅、砷、氟化物加测自控样,要求与样品同步测定。
- 3、各项目样品的保存方法和保存时间要按照《地表水和污水监测技术规范》 (HJ/T 91-2002) 中规定的执行,不能超过规定的保存时间。

大气

- 1、滤膜的称量应在恒温、恒湿天平室中进行,保证同一称量部件在采样前后为同一天平,并避免称量前后人员不同引起的误差。
- 2、采样前后、放置、安装、取出、标记、转移采样部件应戴无粉末、抗静电的 一次性手套。
 - 3、称量空白和样品滤膜时,同时称量两个标准滤膜。

2.3.3 样品交接和其它相关要求

- 1、现场监测及实验室分析技术人员必须持证上岗。
- 2、监测分析仪器必须经计量部门检定合格,且在有效期内。
- 3、采样点的设置及采样频率按监测方案进行,同时做好采样记录并记录采样时的情况,若有偏离监测方案或有关采样技术规定时要加以说明。
 - 4、现场采样和实验室分析原始记录应详细、准确、不得随意涂改。
 - 5、采集的样品经交接双方检查无误后签字验收,并在规定时间内分析完毕。
 - 6、质量监督员应确保采样、分析及数据处理过程质量保证措施的落实和执行。
 - 7、监测数据及报告经"三校"、"三审"后报出。

2.3.4 质控结果

2.3.4.1 监测仪器校准结果

监测仪器标准结里

仪器名称 及型号	仪器编号	校	准项目	测试前 校准值	测试后 校准值	允许偏差	校准结果
			气路 A:1.000	1.007	1.005	±5%	合格
环境空气颗粒物 综合采样器 ZR-3922	LYCDQ-62	流量 L/min	气路 B: 1.000	1.011	1.008	±5%	合格
240,22			尘路: 100.0	101.1	100.9	±5%	合格
			气路 A:1.000	1.003	1.003	±5%	合格
环境空气颗粒物 综合采样器 ZR-3922	LYCDQ-63	流量 L/min	气路 B: 1.000	1.000	1.000	±5%	合格
24.07.22			尘路: 100.0	99.9	99.8	±5%	合格
			昼间	93.8	93.9	±0.5dB	合格
AWA5688	1.11070.05	声学校准	夜间	93.9	93.8	±0.5dB	合格
多功能声级计	LYCZS-05	94.0dB	昼间	93.8	93.9	±0.5dB	合格
		-	夜间	93.9	93.8	±0.5dB	合格
备注							

2.3.4.2 实验室分析质量控制

表 2-3-2 环境空气实验室分析质量控制结果 单位: g

标准滤膜号	原始重量	初重称重	误差	终重称重	误差	误差范围	质控结果
B00019	0.4345	0.4344	-0.0001	0.4343	-0.0002	±0.0005	合格
B00020	0.4370	0.4371	+0.0001	0.4370	+0.0001	±0.0005	合格

表 2-3-3 环境空气实验室分析质量控制结果 单位: g

空白滤膜号	采样前称重	采样后称重	增重	误差范围	质控结果
5021	0.4317	0.4320	+0.0003	±0.0005	合格
5013	0.4256	0.4258	+0.0002	±0.0005	合格

第 10 页 共18 页

表 2-3-4	3-4					州	一个大学	验室分析	地下水实验室分析质量控制结果	制结果						
< 7	P	平行双样	(mg/L)		加标	标回收		※ ※	:验室空白((A)	東海 海海	多空白		标准物检查 (mg/L)	(mg/L)	
次 员 但	浓度1	浓度2	新 名 為 為 為 為	限值%	样品 浓度 (mg/L)	回收率 %	限值%	空白1	空白2	長各	校白1	是否合格	本本	新	X	平 华
氰化物					ND	076	85-115	800'0	0.010	今格	ND	今				
总硬度	183	181	0.5	8 V/				0,00ml	000ml	中	ND	多				
耗氣量	0.51	0.55	3.8	€20							ND	零				
亚硝酸盐氮	0.001	0.001	0.0	≪ 15	0.001	362	85-115	0000	0000	中	QN	黎				
挥发酚	ND	ND	1	€20	ND	104	85-115	0.038	0.038	中格	ND	今				
氨氮	0.05	50.0	0.0	≪15	90.0	94.1	90-110	0.034	0.033	今格	ND	零				
六价格	ND	QN	1	≪ 15	ND	986	90-110	0.002	00003	今	ND	多				
铁	ND	ND	1	≤ 15	ND	93.0	85-115	0.0024	0.0022	合格	ND	多				
檃	ND	ND	1	% 15	ND	0006	85-115	81000	0,0012	中	ND	今格	201433	126µg/L	12.8±0.8µg/L	中
和	ND	ND	1	≪15	ND	106	85-115	0.0011	00016	今格	ND	今格				
掛	ND	ND	1	≪ 15	ND	0.00	85-115	0.0005	0.0011	今格	ND	合格	202529	130	1.32±0.06	中格
サ	ND	ND	1	≪15	0.206µg/L	796	85-115	153,6IF	1523F	今格	ND	今格	200451	69.0µg/L	70.2±3.5µg/L	李
争																

第 11 页 共 18 页

を受ける。	計	平行双样 (mg/L)	(mg/L	_	加	加标回收		实验室空	室空白 (A)	^	现场空1	松口	K	标准物检查 (mg/L)	(mg/L)	
	浓度1	浓度2	村海%	限值%	样品 浓度 (mg/L)	回收率	限值%	空白1	空白2	是 令 格	空白1	是否合格	标样号	据 系 果	文范 际围	是 合 格
汞	ND	ND	1	€30	0.010µg/L	101	85-115	454.0IF	456.5IF	幸	ND	今格				
氟化物	122	121	0.4	≪10				0.00	0.00	今格	ND	合格				
氣化物	9789	9789	0.0	≥10				0.00	0.00	少格	ND	學				
計	028	020	1.8	≥10				0.00	0.00	今格	ND	中				
硫酸盐	702	702	0.0	≤15				0.00	0.00	今格	ND	今格				
	1.43	1.49	21	≪10				QN	ND	今格	ND	今春				
Na ⁺	151	151	0.0	% V/				ND	ND	今格	ND	中				
Mg ²⁺	24.6	24.7	02	% V/				QN	ND	今格	ND	安安				
Ca ²⁺	292	29.0	03	% V/				ND	ND	多	ND	中格		Y		×.
НСО3.	397	399	0.3	- 1												
菌落总数								0 CFU/ml	OFU/ml	學	0 CFU/ml	零				
总大肠 菌群								APIVIOUNL MPIVIOUNL	APN100mL	多	<2 MPN100mL	今				

第 12 页 共 18 页

*	期十	,场平行((mg/L)		出	行双样	~	_	品	标回收		次 粉	室空白	(A)	本	标准物检查	(mg/L)	
が回	浓度1	浓度2	相倫 %	限值%	浓度1	浓度2	相倫 %	限值%	样品 浓度 (mg/L)	奉》%	限值%	空自1	空自2	是否各	标样号	坐 海	秋 郑 图	是否合格
	8.58	8.61	0.03 海海	0.05														
祗	6.2	6.3	8.0	1														
COD					48	48	0.0	€20				21.40ml	21.35ml	一条				
COD	48	46	1.0	≪20	48	48	0.0	€20				21.40ml	21.35ml	合格	2001141	*	35.7±3.0	零
, UOG					12.0	12.5	-	00/				027mg/L	022mg/L	41.4	DOT ADMINES			-
n					13.0	0.01	1.1	07%				1.16mg/L	124mg/L	安心	BODSUZIUSIS	212	210±20	空
ROD.					13.4	121	-	06>				022mg/L	030mg/L		DOD SOSTON	500		1
0					13.1	1.0.1		07%				1.17mg/L	130mg/L		BOD50210520	2003	210±20	始
ROD.	14.0	14.3	-	000	13.7	13.4	=	000				029mg/L	033mg/L	V 10	POD 2001000	3		4 11
0	0.+1	0.4.1	:	07//	1.5.1	tici	1.1	07//				120mg/L	1.08mg/L	中心	BOD50210521	200	210±20	中华
酸 数 数					6.3	6.5	971	1										
数数数	6.4	6.5	8.0	1	6.4	6.4	000	Ī										
					0.541	0.538	0.3	≤15	0.749	94.5	90-105	07070	0.022	合格				
					0.572	0.575	0.3	≤15	0.712	95.4	90-105	0000	0.021	合格				
	0.683	0.689	0.4	≥10	0514	0517	0.3	≤15	0.683	296.7	90-105	0.022	0.021	合格				
心無	557	5.50	9.0	S	5.40	534	90	\$	5.03	996	95-105	0.025	0.024	合格				
				<u></u>	0.05	0.05	0.0	≪10				9000	9000	合格	203995	1.06	1.07±0.04	合格
懋					0.04	0.04	0.0	≪10				0.007	9000	合格	203995	1.08	1.07 ± 0.04	合格
懋	0.04	0.04	0.0	≥10	90'0	900	0.0	≪10	0.05	91.4	90-110	0000	0000	小格				
神	各许																	

第13页共18页

Г	布布	Г	Г	Т	Т	Т	Т	450	Т	-tds	-tds	462	Т	Г	464	Т	Т	Т	Г	Т	Т	Т	Г	Т
	見合		L	L	L		L	合格		一条	一条	器		L	金						1	L		
(mg/L)	秋 郑 原 围							1.09±0.05		12.8±0.8µg/L	0.152±0.012	702±35ug/L			1.41 ± 0.06									
标准物检查	海海							1.12		124µg/L	1/grig/L	Jgn 0.69			1.40		1			1	-			
神	标样号							201133		201433	201236	200451			201751									
^	中各各	合格	合格	合格	零	多	今	今	多	多	零	合格	今	合格	零	今格	多	今格	今格	零	合格	多	黎	1
[空台 (A	陸白2	0000	0001	0000	0000	0000	9000	0.0027	0.0002	0.0014	0.0017	1513IF	4612IF	423.1IF	0.1443 µg	690.0	0.070	0.071	8000	8000	8000	0.013	<20 MPN/L	
实验室	空白1	0000	0000	0000	9000	9000	9000	0.0025	-0.0005	0.0016	0.0012	154.IIF	473.6IF	424.0IF	0.1454 µg	0.070	690.0	0.072	8000	8000	2000	0.013	<20 MPN/L	
	限值%	85-115	85-115	85-115	85-115			80-120	80-120	85-115	80-120	85-115	85-115	1	1	85-115	85-115	85-115	80-120	80-120	80-120			1
阿收	国校奉%	080	266	983	986			100	076	0.00	901	103	100	104	983	97.2	104	93.6	91.6	96.4	93.4			
加标	样品 浓度 (mg/L)	900.0	0.005	0.004	ND			ND	ND	ND	ND	0.026 µg/L	0.003 µg/L	0.121µg/L	0.95	0.0007	0.0007	900000	ND	ND	ND			
	限值%	≪15	≤15	≤15	€20	€20	€20	€30	€30	€20	€30	≥20	€30		1	<25	≤25	<25	<25	<25	<25			
(mg/L)	金幣 %	11.1	0.0	0.0	1	1	1	1	-	1	1	1	1	-	0.0	9.1	0.0	7.7	1	1	1			
平行双样(m	浓度2	0.004	0.005	0.004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.95	0.0005	0.0004	9000.0	ND	ND	ND			
平	浓度1	0.005	0.005	0.004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.95	0.0006	0.0004	0.0007	ND	ND	ND			
	限值%			≤15			€20	€30	€30	€20	€30	≤20	≥30	1	1			≤25			<25			
(mg/L)	相倫の発			1.1			1	I	1	1	1	i	1	1	0.5			0.0	×		-	2.7		
场平行 (m	浓度2			0.004			ND	ND	ND	ND	ND	ND	ND	ND	0.94	0		0.0004			ND	0.019		
現場	浓度1			0.004			ND	ND	ND	ND	ND	QN	ND	ND	0.93			0.0004			ND	0.018		洪
7	少 回 回	六价铬	六价格	六价格	氰化物	氰化物	氰化物	制	转	鍋	铅	申	张	母	氟化物	挥发酚	挥发酚	挥发酚	LAS	LAS	LAS	硫化物	粪大肠菌群	金)

(续)表 2-3-5

3、监测结果

3.1环境空气监测结果

表 3-1-1

环境空气质量监测结里

表 3-1-1					气质量监测组	吉果				
监测 点位	采样日期	TSP		H?S m	ng/m³			NH3r	ng/m³	of Artifecture
皿/// 二//	木什口舠	μg/m³	2:00	8:00	14:00	20:00	2:00	8:00	14:00	20:00
	2021.7.15	156	0.002	0.003	0.005	0.003	0.04	0.06	0.06	0.05
	2021.7.16	166	0.001	0.004	0.002	0.002	0.06	0.05	0.07	0.06
	2021.7.17	151	0.001	0.003	0.005	0.002	0.05	0.06	0.06	0.06
1#厂区内	2021.7.18	164	0.003	0.003	0.004	0.002	0.05	0.07	0.05	0.06
	2021.7.19	158	0002	0.004	0.004	0.003	0.06	0.06	0.06	0.05
	2021.7.20	148	0.002	0.004	0.004	0.003	0.05	0.07	0.06	0.07
	2021.7.21	147	0.001	0.003	0.003	0.003	0.05	0.06	0.06	0.07
	2021.7.15	151	0.001	0.002	0.003	0.002	0.03	0.04	0.04	0.03
	2021.7.16	158	0.001	0.002	0.002	0.001	0.04	0.04	0.04	0.05
	2021.7.17	161	0.001	0.002	0.004	0.002	0.05	0.04	0.04	0.04
2#沙 村	2021.7.18	149	0.002	0.003	0.003	0.001	0.04	0.05	0.03	0.04
	2021.7.19	159	0.001	0.004	0.003	0.002	0.05	0.04	0.05	0.04
	2021.7.20	153	0.001	0.003	0.003	0.002	0.03	0.06	0.04	0.04
	2021.7.21	160	0.001	0.002	0.003	0.002	0.03	0.05	0.05	0.05
环境空 G B 3095-20	气质 标准 012 二级标准值	300								===
	技 术 导则 大 气环 境 2018 附 录 D			10με	g/m³			200μ	g/m³	
达:	标 情 况	达 标		达,	际			达	———— 标	
	备注									

表3-1-2

环境空气气象参数监测结果

采样	采样		气压	(hPa)			温度	.()			风向	(度)			风速	(m &)	
点位	日期	2:00	8:00	14:00	20:00	2:00	8:00	14:00	20:00	2:00	8:00	14:00	20:00	2:00	8:00	14:00	20:00
	2021.7.15	922	921	919	920	10.7	13.7	183	15.1	45	50	50	50	1.7	15	21	19
	2021.7.16	922	921	920	921	97	121	156	133	45	45	50	50	Aug V	1.7	15	20
	2021.7.17	922	920	917	919	98	146	23.1	182	220	230	230	210	21//	20	19	1.7
1# 厂区内	2021.7.18	922	920	916	917	11.7	156	259	21.2	270	265	270	270	20	21	19	1.7
	2021.7.19	922	921	916	922	112	157	262	213	220	210	200	210	25	23	23	25
	2021.7.20	916	921	917	918	11.7	159	227	183	270	265	270	270	19	20	20	21
	2021.7.21	921	917	915	917	13.6	2].1	296	234	230	220	220	230	20	2]	21	20
	2021.7.15	922	921	919	920	103	139	18.1	153	50	50	45	45	19	20	18	21
	2021.7.16	922	921	920	921	99	124	153	13.5	55	50	50	45	17	15	1.7	1.7
	2021.7.17	922	920	917	919	96	148	233	18.5	230	210	210	220	23	25	25	23
2# 沙堡村	2021.7.18	922	920	916	917	11.9	154	258	209	270	270	265	260	20	21	19	20
	2021.7.19	922	921	916	922	11.1	15.9	268	21.1	210	215	215	220	23	21	25	21
	2021.7.20	916	921	917	918	113	156	229	180	270	270	265	260	19	21	20	20
	2021.7.21	92]	917	915	917	133	21.4	298	23.6	220	210	210	220	21	25	25	23
	备注																

3 2 地下水监测结果

表 3-2-1								地下水质	量监测	结果						单位	ː m g/	L
采样点位	采样日期	色度 (度)	SS	总硬	溶解性总固体	挥发 酚类	耗氧量	亚硝酸 盐氮	氨氮	氰化物	六价铬	砷	菌落 总数 CFU/mI	MDN	、肠菌群 1/100mL		水位	水温
贾令 村		ND	ND	182	580	ND	0.67	0.001	0.05	ND	ND	ND	80		<2	210	50	12.1
区内		ND	ND	203	450	ND	0.53	0.001	0.04	ND	ND	ND	94		<2	190	70	11.9
区西北侧	2021.7.18	ND	ND	173	520	ND	0.63	0.001	0.06	ND	ND	ND	90		<2	220	60	12.2
区东北侧	2021.7.10	=	===													210	50	
沙堡村		=-				==	=-=			=-=	=-	=	===		***	180	70	
灌溉水井				=	===	=		=-=								200	60	
《地下水环境》 GB/T 1484 类标》	8-2017	15		450	1000	0.002	3.0	1.00	0.50	0.05	0.05	0.01	100		3.0			
采样点位	采样日期	汞	铅	镉	铁	锰	氟化物	氯化物	硝酸盐氮	硫酸盐	Na	K+	Mg²-	Ca²+	CO32	НСО;	Cr	SO.2
贾令村		ND	ND	ND	ND	ND	1.22	68.6	0.28	70.2	176	1.75	27.3	28.9	0	398	68.6	70.2
厂区内	2021.7.18	ND	ND	ND	ND	ND	0.81	42.3	0.30	52.2	115	1.76	24.9	42.5	24	339	42.3	52.2
区西北侧		ND	ND	ND	ND	0.1	0.79	56.5	0.21	68.0	151	1.46	24.6	29.1	15	360	56.5	68.0
GB/T 14848 类标〉		0.00	1 0.01	0.00	5 0.3	0.10	1.0	250	20.0	250	=,		==-		1			
备注	1、N D 表	示方法	检出限员		果。													

33地表水监测结果

表 3 -1-1					地表水监	测结果						单位	: m g /L	
采样点位	采 样 日期	pH 无量纲	SS	溶解氧	COD	BOD?	高锰 酸 盐指数	氨 氮	总氮	总磷	六价铬	氰化物	粪大肠 菌群 MPN/L	水温
	2021.7.19	8.39	5	6.3	47	13.7	6.4	0.540	5.37	0.06	0.004	ND	7.2×10	2 14.1
排放口上游 500m	2021.7.20	8.32	8	6.2	47	13.3	6.4	0.574	5.28	0.07	0.005	ND	7.6×10	
	2021.7.21	8.40		6.4	48	13.6	6.4	0.516	5.79	0.06	0.004	ND	7.0 × 102	
	2021.7.19	8.55	9	6.0	48	15.2	6.6	0.658	5.11	0.05	0.005	ND	8.1 × 102	
排放口下游 500m	2021.7.20	8.68	7	5.8	48	15.0	6.5	0.612	5.03	0.05	0.004	ND	9.4×102	13.4
	2021.7.21	8.64	6	5.9	49	14.9	6.5	0.680	5.17	0.05	0.005	ND	8.4×102	_
	2021.7.19	8.62		6.2	47	14.3	6.5	0.749	5.48	0.04	0.006	ND	7.6×102	13.9
排放口下游1000m	2021.7.20	8.72	8	6.1	47	14.5	6.5	0.712	5.53	0.04	0.005	ND	7.9×10	
	2021.7.21	8.58	5	6.2	48	14.0	6.4	0.683	5.57	0.04	0.004	ND	7.6 × 102	14.5
地表水环境质 G B 3838-2002	标 V 类	6-9	世	2	40	10	15	2.0		0.4	0.1	0.2	40000	
采样点位	采样 时间	铜	锌	镉	铅	砷	汞	硒	氟化物	挥发酚	LAS	硫化物	色度 (度)	石油类
	2021.7.19	ND	ND	ND	ND	ND	ND	ND	0.95	0.0006	ND	0.016	5	0.01L
排放口上游 50 0m	2021.7.20	ND	ND	ND	ND	ND	ND	ND	0.93	0.0007	ND	0.015	5	0.01L
	2021.7.21	ND	ND	ND	ND	ND	ND	ND	0.92	0.0006	ND	0.016	5	0.01
	2021.7.19	ND	ND	ND	ND	ND	ND	ND	0.94	0.0007	ND	0.017	5	0.01
排放 口下游 500m	2021.7.20	ND	ND	ND	ND	ND	ND	ND	0.96	0.0005	ND	0.017	5	0.011
	2021.7.21	ND	ND	ND	ND	ND	ND	ND	0.95	0.0006	ND	0.018	5	0.01
	2021.7.19	ND	ND	ND	ND	ND	ND	ND	0.95	0.0005	ND	0.017	5	0.01
排放口下游 1000m	2021.7.20	ND	ND	ND	ND	ND	ND	ND	0.93	0.0004	ND	0.018	5	0.01L
	2021.7.21	ND	ND	ND	ND	ND	ND	ND	0.93	0.0004	ND	0.018	5	0.01L
地表水环境质量 G B 3838-2002		1.0	2.0	0.01	0.1	0.1	0.001	0.02	1.5	0.1	0.3	1.0	-	1.0
备注		1、ND 表 2、我单 (示方法 拉未具备	应 出限 以 石油类的 枚	的结果; 验测能力	,委托山西	明朗检测	科技有限	公司进行	检测 ,其	资质证 号 ;	为:18041	2 0 50 19 5	

3.3 噪声监测结果

表 3-3-1					噪声监:	列结果			į	单位:dI	3(A)
	监测位置					厂界	四周		15	3	
监测 日期	监测时段			昼间			夜间				
H 741	项目 点位	L ₁₀	L50	L ₉₀	Leq	SD	L ₁₀	L50	L ₉₀	L _{rq}	SD
	1"厂界北	53.0	50.6	49.8	51.3	1.3	40.4	386	36.8	39.2	1.9
	2 ⁴ 厂界西	54.4	52.8	50.2	53.3	1.6	46.0	42.8	40 4	43.5	2.0
2021.7.15	3 厂界南	51.0	49.4	48.4	50.2	1.6	43.0	39.6	37.4	40.5	2.1
	4 厂界东	55.2	52.8	50.4	53.4	2.1	46.0	42.4	39.6	43.3	2.3
	气象条件		天气: 晴 风速: 1.9m/s					天气: 1	请 风速:	: 1.7m/s	
	1"厂界北	55.0	52.6	51.0	53.1	1.5	41.0	38 8	37.2	39.6	1.8
	2 [#] 厂界西	56.4	53.0	50.4	54.0	2.4	45.2	42.8	41.0	43.3	1.7
	3 ^t 厂界南	52.4	49.8	47.2	50.5	2.1	41.8	39.8	37.8	40.3	18
2021.7.16	4 [#] 厂界东	56.0	53.6	51.4	54.3	1.9	44.8	41.8	38.6	43.2	2.8
	标准限值				60					50	
	达标情况		-	(A) (E)	达标	1 Christian				达标	
	气象条件	3	天气: 晴	风速	: 2.1m/	S	天气: 晴 风速: 1.9m/s				
噪声					_	1#		1		N	
监测点位示意图			2# 🛦					A 4#			
					•	3#					
备注											

第 18 页 共 18 页

附件 13: 山西昌源酒业有限公司环境质量现状监测

监测报告

蓝源成环监(普)字(2021)第50386号

项目名称: 山西昌源酒业有限公司环境质量现状监测

委托单位: ______山西昌源酒业有限公司___

声明

- 1、委托单位在委托前应说明监测目的,凡是污染事故调查、环保设施验收监测、仲裁及鉴定监测需在委托书中说明,并由我单位按规范采样、监测。
- 2、由委托单位自行采样送检的样品,报告只对送检样品负责,不对样品来源负责。
- 3、报告无审核、批准人签章无效,报告涂改无效,报告无本公司公章、骑鋒章及 CMA 章无效。
- 4、本报告未经同意不得用于广告宣传、不得部分复制本报告。
- 5、对检测报告若有异议,应于收到报告十五日内向检验单位提出,逾期不予受理。
- 6、需要退还的样品及其包装物可在收到报告十五日内领取。逾期 不领者,视弃样处理。

项 目 名 称:山西昌源酒业有限公司环境质量现状监测

监 测 单 位: 山西蓝源成环境监测者限分

总 经 理:张鹏

项目负责人:张鹏

报告编写人:解凯睿

山西蓝源成环境监测有限公司

地址:山西省太原市尖草坪区选煤街22号太原选煤厂南门东侧联排房

电话: 18135118297 邮箱: SXLYCHJJC @163.com

检验检测机构 资质认定证书

证书编号:160412050983

名称: 山西蓝源成环境监测有限公司

地址:太原市尖草坪区选煤街22号太原选煤厂南门东侧联排房

经审查, 你机构已具备国家有关法律、行政法规规定的基 本条件和能力, 现予批准, 可以向社会出具具有证明作用的数 据和结果,特发此证。资质认定包括检验检测机构计量认证。 检验检测能力及授权签字人见证书附表。

许可使用标志

160412050983

有效期至:

发证日期: 2016年06月24日

发证机关: 山西省质量技术监督局

本证书由国家认证认可监督管理委员会监制,在中华人民共和国境内有效。 6在法人专格运韦在米别的开展工作。2.6在证韦在被朝局消费3个月提出发布中济,逾期不中济此证书运机

目 录

任	务来源1
1,	监测内容1
1.1	点位情况1
1.2	执行标准1
2、	监测质量保证1
2.1	监测方法1
2.2	监测主要仪器及人员2
2.3	质量保证和质量控制2
3,	监测结果4
3.1	地下水监测结果4
2.2	T. 接穴 气 此 涮 仕 里

任务来源

受山西昌源酒业有限公司委托, 山西蓝源成环境监测有限公司依据《山西昌源酒业有 限公司环境质量现状监测任务通知单》中的相关内容,于2021年10月28日~11月3日 对该项目进行了监测, 监测报告如下:

1、监测内容

地下水、环境空气

1.1 点位情况

表 1-1-1 监测点位、项目、频次一览表

监测类别	监测位置	监测项目	监测频次及要求
	贾令村		
地下水	厂区内	石油类	监测1天,采样1次, 同时记录井深、水位、水温。
	厂区西北侧		
打连点点	厂区	非甲烷总烃	连续监测7天,监测小时值,
环境空气 -	沙堡村	同时记录风向、风速、气压、气温	每天采样 4 次,采样时间 202:00、08:00、14:00、20:00。

1.2 执行标准

表 1-2-1 执行标准一览表

监测类别	执行标准	污染物	标准限值
环境空气	《环境空气质量 非甲烷总烃限值》 (DB13/1577-2012)表1 二级标准	非甲烷总烃	2.0 mg/m ³

2、监测质量保证

2.1 监测方法

表 2-1-1

采样方法一览表

序号	监测类别	采样方法依据 (标准名称及编号)	备注
1	地下水	地下水环境监测技术规范 HJ 164-2020	
2	环境空气	环境空气质量手工监测技术规范 HJ 194-2017	

表 2-1-2 环境空气分析方法一览表

序号	监测项目	分析方法依据 (标准名称及编号)	分析方法 检出限
1	非甲烷总烃	直接进样-气相色谱法 HJ 604-2017	0.07mg/m³ (以碳计)

表 2-1-3

地下水分析方法一览表

序号	监测项目	分析方法依据 (标准名称及编号)	分析方法 检出限
1	石油类	水质 石油类的测定 紫外分光光度法 HJ970-2018	0.01 mg/L

2.2 监测主要仪器及人员

表 2-2-1

监测主要仪器一览表

XX 2-2-1	皿例工女人份	N. W.			
监测项目	仪器名称及型号	仪器编号	仪器技术指标	检定/校准 有效期	
石油类	紫外可见分光光度计 UV-4800	LYCFX-77	190∼1100nm ±0.3nm	2022.10.15	
非甲烷总烃	气相色谱仪 TRACE1300	LYCFX-80	线性范围>107	2023.3.30	
风向风速	16026 电接风向风速仪	LYCDQ-23	0~30 m/s ± (30±0.03v) m/s	2022.10.14	
气压	DYM 3 空盒气压表	LYCDQ-26	800hPa~1060 hPa	2022.10.14	

表 2-2-2 监测人员及上岗证号一览表

			11 - 1 201-			
监测人员	张鹏	魏永明	王芮	史红瑞	杜月勤	
上岗证号 SXLYCHJJC01		SXLYCHJJC02	SXLYCHJJC03	SXLYCHJJC04	SXLYCHJJC20	
监测人员 赵瑞芳		李丽荣	解凯睿	张文彬	张伟	
上岗证号	SXLYCHJJC15	SXLYCHJJC09	SXLYCHJJC11	SXLYCHJJC13	SXLYCHJJC14	
监测人员	张栋	杨兵杰	王晓宙	陈辉		
上岗证号	SXLYCHJJC29	SXLYCHJJC35	SXLYCHJJC36	SXLYCHJJC26		

2.3 质量保证和质量控制

2.3.1 现场监测质量保证

地下水

- 1、严格按照《地下水环境监测技术规范》(HJ 164-2020)进行样品的采集、保存与 运输。
 - 2、采集一个现场空白样品。

环境空气

- 1、采样布点、采样方式、采样仪器、采样时间、采样流量等内容严格执行《环境空 气质量手工监测技术规范》(HJ 194-2017)的要求。
- 2、采集非甲烷总烃的气袋使用前用除烃空气清洗至少3次,采样时气袋需用样品气清洗至少3次,采样结束后样品应立即放入具有避光功能的样品保存箱内保存,直至样品分析时取出。
- 3、将注入除烃空气的气袋带至采样现场,与同批次采集的样品一起送回实验室分析。 每20个或每批次(少于20个)应至少取1个注入除烃空气。

2.3.2 实验室质量控制

地下水

1、样品的保存方法和保存时间要按照《地下水环境监测技术规范》(HJ 164-2020)中的规定执行,不能超过规定的保存时间。

环境空气

- 1、每批样品应至少分析10%的实验室平行样。
- 2、每批样品分析前、后,应测定校准曲线范围内的有证标气,结果的相对误差不大于 10%。

2.3.3 样品交接和其它相关要求

- 1、现场监测及实验室分析技术人员必须持证上岗。
- 2、监测分析仪器必须经计量部门检定合格,且在有效期内。
- 3、采样点的设置及采样频率按监测方案进行,同时做好采样记录并记录采样时的情况,若有偏离监测方案或有关采样技术规定时要加以说明。
- 4、现场采样和实验室分析原始记录应详细、准确、不得随意涂改。
 - 5、采集的样品经交接双方检查无误后签字验收,并在规定时间内分析完毕。
 - 6、质量监督员应确保采样、分析及数据处理过程质量保证措施的落实和执行。
 - 7、监测数据及报告经"三校"、"三审"后报出。

2.3.4 质控结果

2.3.4.1 实验室分析质量控制结果

表 2-3-1 环境空气实验室分析质量控制结果

标准物检查(μmol/mol)								平行双样(mg/m³)			
标准气 浓度	总烃 浓度	相对误差%	限值 %	甲烷浓度	相对误差%	限值 %	浓度 1	浓度	相对偏差%	限值%	
5.20	5.29	1.7	≤10	5.29	1.7	≤10	0.12	0.12	0.0	≤20	
5.20	5.29	1.7	≤10	5.28	1.5	≤10	0.10	0.10	0.0	≤20	
5.20	5.36	3.1	≤10	5.36	3.1	≤10	0.21	0.22	2.3	≤20	
5.20	5.36	3.1	≤10	5.36	3.1	≤10	0.16	0.17	3.0	≤20	
5.20	5.37	3.3	≤10	5.36	3.1	≤10	0.23	0.22	2.2	≤20	
5.20	5.42	4.2	≤10	5.42	4.2	≤10	0.17	0.18	2.9	≤20	
5.20	5.35	2.9	≤10	5.34	2.7	≤10	0.17	0.17	0.0	≤20	
5.20	5.33	2.5	≤10	5.33	2.5	≤10	0.16	0.15	3.2	≤20	
	浓度 5.20 5.20 5.20 5.20 5.20 5.20 5.20	浓度 浓度 5.20 5.29 5.20 5.29 5.20 5.36 5.20 5.36 5.20 5.37 5.20 5.42 5.20 5.35	标准气 总烃 相对 误差% 5.20 5.29 1.7 5.20 5.29 1.7 5.20 5.36 3.1 5.20 5.36 3.1 5.20 5.36 3.1 5.20 5.37 3.3 5.20 5.42 4.2 5.20 5.35 2.9	标准气 总烃 相对 限值 浓度 浓度 误差% %6 5.20 5.29 1.7 ≤10 5.20 5.29 1.7 ≤10 5.20 5.36 3.1 ≤10 5.20 5.37 3.3 ≤10 5.20 5.42 4.2 ≤10 5.20 5.35 2.9 ≤10	标准气 总烃 相对 限值 甲烷 浓度 5.20 5.29 1.7 ≤10 5.29 5.20 5.29 1.7 ≤10 5.28 5.20 5.36 3.1 ≤10 5.36 5.20 5.36 3.1 ≤10 5.36 5.20 5.37 3.3 ≤10 5.36 5.20 5.42 4.2 ≤10 5.42 5.20 5.35 2.9 ≤10 5.34	标准气 总烃 相对 限值 甲烷 相对 浓度 误差% 5.20 5.29 1.7 ≤10 5.29 1.7 5.20 5.29 1.7 ≤10 5.28 1.5 5.20 5.36 3.1 ≤10 5.36 3.1 5.20 5.36 3.1 ≤10 5.36 3.1 5.20 5.37 3.3 ≤10 5.36 3.1 5.20 5.42 4.2 ≤10 5.42 4.2 5.20 5.35 2.9 ≤10 5.34 2.7	标准气	标准气 总烃 相对 限值 甲烷 相对 限值 浓度 1 5.20 5.29 1.7 ≤10 5.29 1.7 ≤10 0.12 5.20 5.29 1.7 ≤10 5.28 1.5 ≤10 0.10 5.20 5.36 3.1 ≤10 5.36 3.1 ≤10 0.21 5.20 5.36 3.1 ≤10 5.36 3.1 ≤10 0.16 5.20 5.37 3.3 ≤10 5.36 3.1 ≤10 0.23 5.20 5.42 4.2 ≤10 5.42 4.2 ≤10 0.17 5.20 5.35 2.9 ≤10 5.34 2.7 ≤10 0.17	标准气	标准气	

3、监测结果

3.1 地下水监测结果

表 3-1-1

地下水监测结果

衣 3-1-1			也「小皿例名木		terr Pro
采样点位	采样日期	石油类 mg/L	水温℃	井深 m	检验专用章
贾令村		ND	13.3	210	50
厂区内	2021.10.29	ND	11.7	190	70
厂区西北侧		ND	12.0	220	60
备注	1、ND表示方法	去检出限以下的结果	果。		

3.2 环境空气监测结果

X	133	1	_	_		_	_				_		_			_	_	_	_
THE WAY	_	20.00	2.2	2.2	2.2	1.8	1.3	2.1	2.0	2.2	2.2	2.1	1.8	1.3	2.1	2.0			
のかの日本地	财速 (m/s)	14:00	2.2	2.2	2.1	1.5	1.4	2.0	2.2	2.0	2.1	2.2	1.4	1.4	2.1	2.2			
		8:00	2.2	2.0	2.0	1.5	1.3	2.2	2.1	2.2	2.0	2.0	1.5	1.2	2.2	2.1			
		2:00	2.3	2.1	2.2	1.7	1.2	2.2	2.2	2.2	2.0	2.2	1.6	1.2	2.2	2.3			
	(度)	20:00	220	220	220	225	130	220	225	220	220	225	225	130	220	225			
		14:00	225	220	225	225	130	225	220	220	225	225	225	130	225	220			
	风向	8:00	220	225	220	225	135	220	220	220	225	220	220	135	220	220	1	1	
		2:00	225	225	225	220	135	225	225	225	225	225	220	130	230	225			
	气温 (°C)	20:00	11.2	11.8	11.9	10.0	0.6	7.9	10.5	11.4	11.8	11.7	10.1	9.2	7.9	9.01			
环境空气质量监测结果		14:00	17.6	18.2	18.4	15.4	14.5	16.2	18.7	17.8	18.0	18.4	15.4	14.5	16.3	18.7			
		8:00	7.3	7.7	7.8	7.2	7.9	5.7	4.8	7.3	7.7	7.9	7.3	8.0	5.7	4.8	-	1	
		2:00	9.8	8.3	8.5	5.7	8.2	4.6	5.7	8.7	8.1	8.5	5.7	8.3	4.7	5.6			
环境	气压 (hPa)	20:00	927	927	927	927	928	929	927	927	927	927	927	928	929	927	-		
		14:00	925	925	925	925	925	925	925	925	925	925	925	925	925	925		1	
		8:00	929	929	929	929	929	930	930	929	929	929	929	929	930	930		i	
		2:00	929	929	929	930	929	930	930	929	929	929	930	929	930	930			
 	烷总烃 (mg/m³)	20:00	0.16	0.17	0.16	0.19	0.18	0.19	0.17	0.14	0.16	0.13	0.13	0.12	0.13	0.12			
-		14:00	0.19	0.14	0.22	0.15	0.22	0.15	0.20	0.11	0.11	0.17	60.0	0.10	60.0	0.16	(mg/m3)	长	
		8:00	0.16	0.12	0.17	0.18	0.18	0.18	0.17	0.15	0.15	0.14	0.13	0.14	0.13	0.12	2.0 (mg	达标	
	非甲烷	2:00	0.13	0.14	0.15	0.14	0.13	0.14	0.14	0.12	0.10	0.11	0.16	0.10	0.18	0.10	. ,		
2-1	来样口排	No. H LAN	2021.10.28	2021.10.29	2021.10.30	2021.10.31	2021.11.1	2021.11.2	2021.11.3	2021.10.28	2021.10.29	2021.10.30	2021.10.31	2021.11.1	2021.11.2	2021.11.3	标准值	达标情况	备注
表 3-2-1	来样	点位				r N							沙堡村				林	达构	如

第5页共5页

-----报告结束------

附件 14: 酒糟处理协议书

协议书

甲方: 祁县泓洋牧业有限公司

乙方: 山西昌源酒业有限公司

为合理转化公司酒糟有效利用并助力当地养殖业发展。双方就酒 糟处理事宜达成如下协议。

- 一、甲方负责公司酒糟的拉运清理。
- 二、每天做到场地处理干净,不得留有余糟堆放。
- 三、运输工具自备,要以安全第一为主,运输安全责任自负。

四、酒糟用于养殖喂养所用,不得随意乱扔、乱倒。有此行为发生,由甲方承担一切法律责任。

本协议一式两份,望各方严格遵守。

2021年 1月 1日

城镇污水排入排水管网许可证

中 许可证编号:祁审批城排字第

根据《城镇排水与污水处理条例》(中华人民共和国国务院令第641号)以及《城镇 污水排入排水管网许可管理办法》(中华人民共和国住房和城乡建设部令第21号)的 规定,经审查,准予在许可范围内(详见副本)向城镇排水设施排放污水。

Ш 12 月 26 有效期:自

25 年 12 月 2028 至

亭

中华人民共和国住房和城乡建设部监制

城镇污水排人排水管网 许可证 (副本)

中华人民共和国住房和城乡建设部监制

排水户	法定代	营业执照注册号	详细地	排水户	许可证	有效期	排		坎	Z -E		备	
名称	表人	注册号	地址	类型	编号	期:	排污水口编号	#			白要污染物项目。 唇	1、排力 2、对于 9排放自 (按实	
四四	段为	911	中国	日湯	华	202	血中	4		100	杂物项(SS)	大户国 子 <u>为</u>) 三处国 京縣	
山西昌源酒业有限公司	段友仁	91140727762450294D	山西省晋中市祁县贾令镇贾令村	白酒制造	祁审批城排字第二	2023. 12. 26-2028. 12.	连接管位置	东经 112" 20' 6" 北纬 37" 23' 36"			主要汚染物项目及排放标准(mg/L PH 6.5-2.5 を 3.40 kg 4.00	1.排水户雨水排放口设置情况; 2.对于列人重点排污单位名录侵杂物排放自动监测设备情况。 (按实际需要打印)	
10公司		94D	3. 五五十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	列人重点排污单位名录(是/否)	2023001号	. 12. 25	排水去向 (路名)	昌鎮北路北廷至 高速连接线路段			E(mg/L): 6.5-9.5 <-400 mg/L <-500 mg/L <-500 mg/L <-350 mg/L <-45 mg/L <-70 mg/L <-8 mg/L	置情况; 位名录的排水	10000000000000000000000000000000000000
			工	;单位名录(排水量(元/日)	221.68				户,注明安 出版	1
				是/否) 否			污水最终去向	祁县鸠宇市政污水 处理有限公司				1,排水户雨水排放口设置情况; 2.对于列人重点排污单位名录的排水户,注明安装的主要水污排放自动监测设备情况。 (按实际需要打印)	管理点

1、有无违规行为:

2.处罚情况:

2.处罚情况:

2.处罚情况:

2.处罚情况:

2.处罚情况:

2.处罚情况:

4. 月 日

1、有无违规行为:

2.处罚情况:

2.处罚情况:

4. 有 日

1、有无违规行为:

4. 在 前 日

2.处罚情况:

4. 有 日 日

1、有无违规行为:

4. 在查时问: 年 月 日

1、有无违规行为:

4. 在查时问: 年 月 日

监督检查记录

山西昌添酒业有限公司

根据《城镇排水与污水处理条例》(中华人民 共和国国务院令第 641号)以及《城镇污水排人 排水管网许可管理办法》(中华人民共和国住房 和城乡建设部令第 21号)的规定,经审查,准予 在许可范围内向城镇排水设施排放污水。

特此发证。

有效期: 自 2023 年 12 月 26 日至 2028 年 12 月 25 日

许可证编号; 祁审批城排字第 2023001号

特证说明

1、《城鎮污水排入排水管同拌可证》是排水户向城 鎮排水设施排放污水许可的凭证。 2.此征书只限本排水户使用,不得伪造、涂改、出借和格让。

3、排水户应当按照"锌可肉容"(包括排水口数量和位置、排水量、排放的主要污染物种类和浓度等)排放污水。排水户的"许可肉容"发生变化的,排水户应当向所在地域转排水主管部门重断中领(液镇污水排入排水管照许可证》。

4、排水户名称、法定代表人等变化的,应当在工商整记变更后 30 目内到原发证机关办理变更。

5、排水户应当在有效期届满 30 目前,向发证机关提出延续申请。逾期未申请延续的,《城镇污水槽入排水管周许可证》有效期满后自动失效。

晋中市生态环境局祁县分局

祁生环字[2023]22 号

晋中市生态环境局祁县分局 关于印发山西昌源酒业有限公司改建自动 化灌装生产线与地缸大曲车间项目主要污 染物总量指标置换方案的通知

各相关乡(镇)人民政府、经济开发区管委会、县直各有关 单位:

现将《山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目主要污染物总量指标置换方案》予以下发,请认真遵照执行。

晋中市生态环境局秘县分局 2023年10月29日

山西昌源酒业有限公司改建自动化灌装生 产线与地缸大曲车间项目主要污染物 总量指标置换方案

为落实《晋中市主要污染物排放总量指标管理暂行办法》 要求,确保山西昌源酒业有限公司改建自动化灌装生产线与 地缸大曲车间项目项目建成投产时区域环境得到改善,特制 定本方案。

一、项目基本情况

(一)项目概况

山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目位于山西省祁县贾令镇贾令村,建设单位为山西昌源酒业有限公司,2020年5月6日,祁县工业和信息化局以"祁工信字[2020]第29号"文下发了"关于祁县良有酒业有限公司改建自动化灌装生产线与地缸大曲车间项目备案的通知",同意本项目备案。2020年7月23日祁县行政审批服务管理局以"(祁)登记企变字[2020]第60号"文准予祁县良有酒业有限公司更名为山西昌源酒业有限公司。建设规与年产白酒15000t,其中:麸曲原酒9000t/a,大曲原酒6000t/a;占地73961.64m²;总投资4600万元;主要建设内容包括改建现有的麸曲酿造二车间为地缸大曲酿造车间,改建现有闲置库房为大曲酿造四、五、六车间,拆除现有办公区改建为大曲酿造七车间,新建白酒灌装车间,同时配套建设相关辅助工程及设备等;配套环保设施包括破碎上料配

套集气罩+布袋除尘器,蒸汽锅炉采用天然气做燃料、采取低氮燃烧技术,污水处理站臭气,处理设施全封闭并安装集气管,收集后进入1套生物滤池除臭系统等措施。

(二)主要污染物排放量

经类比法和现有自行监测数据测算,本项目大气主要污染物排放量颗粒物 1.289 吨/年、NOx2.18 吨/年、SO₂0.285 吨/年;水主要污染物排放量化学需氧量 2.625 吨/年、NH₃-N0.13 吨/年。

二、上一年度区域环境质量状况及置换分析

(一)环境空气质量现状及置换分析

祁县 2022 年环境空气质量细颗粒物、颗粒物、氮氧化物、二氧化硫、臭氧年均浓度分别为 80μg/m³、41μg/m³、μg/m³、38μg/m³、19μg/m³、176μg/m³,其中 PM_{2.5}、PM₁₀和臭氧未达到《环境空气质量标准》(GB3095-2012)二级标准。根据《山西省生态环境厅关于印发建设项目主要污染物排放总量指标核定暂行办法》(晋环规[2023]1 号),二氧化硫、氮氧化物、颗粒物排放量不大于 3 吨不需要进行总量置换。

(二)水环境质量现状及置换分析

2022 年祁县 5 个断面水环境质量均达到考核要求,根据《山西省生态环境厅关于印发建设项目主要污染物排放总量指标核定暂行办法》(晋环规[2023]1 号),NH₃-N 排放量不大于 0.5 吨不需要进行总量置换。化学需氧量排放量需按建设项目核定污染物排放总量指标的 1 倍进行置换。

综上所述,该项目主要污染物置换方案按化学需氧量 2.625 吨/年编制。

三、置换源及采取的措施

祁县实施的城赵镇城赵村污水处理站 2023 年底完成验收,按照系数方法核算,预计可形成减排量化学需氧量20.075 吨/年、NH₃-N 0.5256 吨/年。上述预计形成的减排量未用于其他建设项目,拟用于本项目化学需氧量 2.625 吨/年,还剩余减排量化学需氧量 17.45 吨/年、NH₃-N 0.5256 吨/年。

上述置换源全部位于我县范围内,我县承诺以上使用的减排量不在用于其它建设项目。

附件: 1.山西昌源酒业有限公司改建自动化灌装生产线 与地缸大曲车间项目主要污染物置换措施一览表

2.山西昌源酒业有限公司改建自动化灌装生产线 与地缸大曲车间项目主要污染物排放量计算说明

- 3.山西昌源酒业有限公司承诺书
- 4.祁县人民政府承诺文件

附件

然	
OD/E	
(HC	
间顶	
く曲を	
加力	
山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目COD污染	
37.6	***
整线	
化溢	
自动	
改建	
公司	
有限、	
西小	7
引源河	2
超	
7	4

1		0		NH ₃ -N	0.5256	17. 5 0. 5256
		(t/a)		000	17.5	17.5
		置换源剩余置换量		VOCs		
		源剩余		NO×		
		置换		S0 ₂		
			177	数		
			NH3-N	0.13	/	
1		(t/a)	COD	2. 625	否 2.625	2, 625
		本项目主要污染物排放量情况(t/a)	VOCs	\	/	
	芸文	物排放!	NOx	2. 18	/	
	一览表	要污染	S0 ₂	. 289 0. 285 2. 18	/	
	7 5)	项目主	颗粒物	1. 289	/	
	物置换措施	*	污染物	排放量	是否需要 倍量置换 及置换量	小计
	置担	可用置换量件口	形成/ 预计形	说, 计形成 明确时 间)	2023.1	
	烫		措施(淘汰关停/清洁取暇	/提标改造或其他	20.075 0.53 污水处理	
				NH ₃ -N	0.53	
		/a)		000	20.075	20.075
		置换来源及可用置换量 (t/a)		VOCs		
		丁用置抄		NO×		
	n H	5源及百		S0 ₂		
1	县你	職権利		数数		
	*			置换来源	祁县城赵 村污水处 理站	
1	世中	且	量 区 、	Î	祁县	
9	Patricula		压中		-	

山西昌源酒业有限公司承诺书

我公司承诺山西昌源酒业有限公司改建自动化灌装生产线与地 缸大曲车间项目环境影响评价文件批复后按计划建成投产(使用),认 真落实置换方案,依法申领排污许可证。

若山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目在其环境影响评价文件批复后未按计划建成投产(使用)或者使用,本公司承诺,自愿向晋中市生态环境局退回由祁县人民政府调剂给山西昌源酒业有限公司改建自动化灌装生产线与地缸大曲车间项目的 COD 排放量 2.625 吨/年,并承担一切法律后果和损失。

山西昌源酒业有限公司(盖章)

祁县人民政府

祁县人民政府 关于落实山西昌源酒业有限公司自动化 灌装生产线与地缸大曲车间项目区域 污染物置换方案的承诺函

晋中市生态环境局:

为认真贯彻落实山西省生态环境厅《建设项目主要污染物排放总量指标核定办法》(晋环规[2023]1号)以及《晋中市主要污染物排放总量指标管理暂行办法》(市环发[2023]42号)的规定,晋中市生态环境局祁县分局制定了《山西昌源酒业有限公司自动化灌装生产线与地缸大曲车间项目区域污染物置换方案》(以下简称《置换方案》),明确了置换来源为城赵镇城赵村污水处理站,该污水处理站目前正在试运行,处理规模为250吨/天,正常运行后预计可形成减排化学需氧量20.075吨/年,氨氮0.526吨/年。

我县承诺,将保障该站的稳定运行,确保达标排放,且用于山西昌源酒业有限公司自动化灌装生产线与地缸大曲车间项目的置换量化学需氧量2.625吨/年,不再用于其他项目区域削减。